Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(22): 8167-72, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843165

RESUMEN

Soluble epoxide hydrolase (sEH) is inhibited by electrophilic lipids by their adduction to Cys521 proximal to its catalytic center. This inhibition prevents hydrolysis of the enzymes' epoxyeicosatrienoic acid (EET) substrates, so they accumulate inducing vasodilation to lower blood pressure (BP). We generated a Cys521Ser sEH redox-dead knockin (KI) mouse model that was resistant to this mode of inhibition. The electrophilic lipid 10-nitro-oleic acid (NO2-OA) inhibited hydrolase activity and also lowered BP in an angiotensin II-induced hypertension model in wild-type (WT) but not KI mice. Furthermore, EET/dihydroxy-epoxyeicosatrienoic acid isomer ratios were elevated in plasma from WT but not KI mice following NO2-OA treatment, consistent with the redox-dead mutant being resistant to inhibition by lipid electrophiles. sEH was inhibited in WT mice fed linoleic acid and nitrite, key constituents of the Mediterranean diet that elevates electrophilic nitro fatty acid levels, whereas KIs were unaffected. These observations reveal that lipid electrophiles such as NO2-OA mediate antihypertensive signaling actions by inhibiting sEH and suggest a mechanism accounting for protection from hypertension afforded by the Mediterranean diet.


Asunto(s)
Dieta Mediterránea , Epóxido Hidrolasas/metabolismo , Ácidos Grasos/metabolismo , Hipertensión/dietoterapia , Hipertensión/prevención & control , Angiotensina II/farmacología , Animales , Presión Sanguínea , Cardiomegalia/dietoterapia , Cardiomegalia/prevención & control , Celulasa , Modelos Animales de Enfermedad , Epóxido Hidrolasas/genética , Técnicas de Sustitución del Gen , Hipertensión/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Nitratos/metabolismo , Nitritos/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
2.
Brain ; 136(Pt 1): 269-81, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23288328

RESUMEN

Dystroglycanopathies are a clinically and genetically diverse group of recessively inherited conditions ranging from the most severe of the congenital muscular dystrophies, Walker-Warburg syndrome, to mild forms of adult-onset limb-girdle muscular dystrophy. Their hallmark is a reduction in the functional glycosylation of α-dystroglycan, which can be detected in muscle biopsies. An important part of this glycosylation is a unique O-mannosylation, essential for the interaction of α-dystroglycan with extracellular matrix proteins such as laminin-α2. Mutations in eight genes coding for proteins in the glycosylation pathway are responsible for ∼50% of dystroglycanopathy cases. Despite multiple efforts using traditional positional cloning, the causative genes for unsolved dystroglycanopathy cases have escaped discovery for several years. In a recent collaborative study, we discovered that loss-of-function recessive mutations in a novel gene, called isoprenoid synthase domain containing (ISPD), are a relatively common cause of Walker-Warburg syndrome. In this article, we report the involvement of the ISPD gene in milder dystroglycanopathy phenotypes ranging from congenital muscular dystrophy to limb-girdle muscular dystrophy and identified allelic ISPD variants in nine cases belonging to seven families. In two ambulant cases, there was evidence of structural brain involvement, whereas in seven, the clinical manifestation was restricted to a dystrophic skeletal muscle phenotype. Although the function of ISPD in mammals is not yet known, mutations in this gene clearly lead to a reduction in the functional glycosylation of α-dystroglycan, which not only causes the severe Walker-Warburg syndrome but is also a common cause of the milder forms of dystroglycanopathy.


Asunto(s)
Distrofias Musculares/congénito , Distrofias Musculares/genética , Mutación , Nucleotidiltransferasas/genética , Adolescente , Niño , Preescolar , Distroglicanos/genética , Distroglicanos/metabolismo , Femenino , Glicosilación , Humanos , Imagen por Resonancia Magnética , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Adulto Joven
3.
Hypertension ; 79(5): 946-956, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35168371

RESUMEN

BACKGROUND: We previously demonstrated that nitroxyl causes vasodilation, at least in part, by inducing the formation of an intradisulfide bond between C117 and C195 in the high affinity cyclic guanosine monophosphate-binding site of PKGI (cyclic guanosine monophosphate-dependent protein kinase I). The aim of this study was to determine whether nitroxyl donors lower blood pressure via this novel PKGI activation mechanism in vivo. METHODS: To determine this, a C195S PKGI knock-in mouse model was generated that ubiquitously and constitutively expresses a mutant kinase resistant to nitroxyl-induced intradisulfide activation. RESULTS: Knock-in and wild-type littermates did not differ in appearance, body weight, in PKGI protein expression or blood gas content. Organ weight was similar between genotypes apart from the cecum that was significantly enlarged in knock-in animals. Mean arterial pressure and heart rate monitored in vivo over 24 hours by radio-telemetry revealed neither a significant difference between genotypes at baseline nor during angiotensin II-induced hypertension or sepsis. CXL-1020, a clinically relevant nitroxyl donor, did not lower blood pressure in normotensive animals. In contrast, administering CXL-1020 to hypertensive wild-type mice reduced their blood pressure by 10±4 mm Hg (P=0.0184), whereas the knock-in littermates were unaffected. CONCLUSIONS: Oxidation of C195 in PKGI contributes to the antihypertensive effects observed in response to nitroxyl donors, emphasising the potential importance of nitroxyl donors in pathological scenarios when cyclic guanosine monophosphate levels are reduced and insufficient to activate PKGI.


Asunto(s)
Hipertensión , Hipotensión , Animales , Presión Sanguínea , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/química , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Guanosina/farmacología , Guanosina Monofosfato/farmacología , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Ratones , Óxidos de Nitrógeno , Proteínas Quinasas/farmacología
4.
Redox Biol ; 29: 101405, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31926628

RESUMEN

Nitro-oleate (10-nitro-octadec-9-enoic acid), which inhibits soluble epoxide hydrolase (sEH) by covalently adducting to C521, increases the abundance of epoxyeicosatrienoic acids (EETs) that can be health promoting, for example by lowering blood pressure or their anti-inflammatory actions. However, perhaps consistent with their impact on angiogenesis, increases in EETs may exacerbate progression of some cancers. To assess this, Lewis lung carcinoma (LLc1) cells were exposed to oleate or nitro-oleate, with the latter inhibiting the hydrolase and increasing their proliferation and migration in vitro. The enhanced proliferation induced by nitro-oleate was EET-dependent, being attenuated by the ETT-receptor antagonist 14,15-EE-5(Z)-E. LLc1 cells were engineered to stably overexpress wild-type or C521S sEH, with the latter exhibiting resistance to nitro-oleate-dependent hydrolase inhibition and the associated stimulation of tumor growth in vitro or in vivo. Nitro-oleate also increased migration in endothelial cells isolated from wild-type (WT) mice, but not those from C521S sEH knock-in (KI) transgenic mice genetically modified to render the hydrolase electrophile-resistant. These observations were consistent with nitro-oleate promoting cancer progression, and so the impact of this electrophile was examined in vivo again, but this time comparing growth of LLc1 cells expressing constitutive levels of wild-type hydrolase when implanted into WT or KI mice. Nitro-oleate inhibited tumor sEH (P < 0.05), with a trend for elevated plasma 11(12)-EET/DHET and 8(9)EET/DHET (dihydroxyeicosatrienoic acid) ratios when administered to WT, but not KI, mice. Although in vitro studies with LLc1 cells supported a role for nitro-oleate in cancer cell proliferation, it failed to significantly stimulate tumor growth in WT mice implanted with the same LLc1 cells in vivo, perhaps due to its well-established anti-inflammatory actions. Indeed, pro-inflammatory cytokines were significantly down-regulated in nitro-oleate treated WT mice, potentially countering any impact of the concomitant inhibition of sEH.


Asunto(s)
Epóxido Hidrolasas , Neoplasias , Alquenos , Animales , Células Endoteliales , Epóxido Hidrolasas/genética , Inflamación , Ratones
5.
Nat Metab ; 2(11): 1223-1231, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33106688

RESUMEN

Cardiomyocytes rely on metabolic substrates, not only to fuel cardiac output, but also for growth and remodelling during stress. Here we show that mitochondrial pyruvate carrier (MPC) abundance mediates pathological cardiac hypertrophy. MPC abundance was reduced in failing hypertrophic human hearts, as well as in the myocardium of mice induced to fail by angiotensin II or through transverse aortic constriction. Constitutive knockout of cardiomyocyte MPC1/2 in mice resulted in cardiac hypertrophy and reduced survival, while tamoxifen-induced cardiomyocyte-specific reduction of MPC1/2 to the attenuated levels observed during pressure overload was sufficient to induce hypertrophy with impaired cardiac function. Failing hearts from cardiomyocyte-restricted knockout mice displayed increased abundance of anabolic metabolites, including amino acids and pentose phosphate pathway intermediates and reducing cofactors. These hearts showed a concomitant decrease in carbon flux into mitochondrial tricarboxylic acid cycle intermediates, as corroborated by complementary 1,2-[13C2]glucose tracer studies. In contrast, inducible cardiomyocyte overexpression of MPC1/2 resulted in increased tricarboxylic acid cycle intermediates, and sustained carrier expression during transverse aortic constriction protected against cardiac hypertrophy and failure. Collectively, our findings demonstrate that loss of the MPC1/2 causally mediates adverse cardiac remodelling.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Cardiomegalia/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Angiotensina II , Animales , Proteínas de Transporte de Anión/biosíntesis , Proteínas de Transporte de Anión/genética , Cardiomegalia/patología , Proliferación Celular , Ciclo del Ácido Cítrico , Constricción Patológica , Femenino , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/biosíntesis , Proteínas de Transporte de Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/biosíntesis , Transportadores de Ácidos Monocarboxílicos/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ácido Pirúvico/metabolismo
6.
Sci Rep ; 7(1): 9938, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855531

RESUMEN

Despite the mechanisms for endogenous nitroxyl (HNO) production and action being incompletely understood, pharmacological donors show broad therapeutic promise and are in clinical trials. Mass spectrometry and site-directed mutagenesis showed that chemically distinct HNO donors 1-nitrosocyclohexyl acetate or Angeli's salt induced disulfides within cGMP-dependent protein kinase I-alpha (PKGIα), an interdisulfide between Cys42 of the two identical subunits of the kinase and a previously unobserved intradisulfide between Cys117 and Cys195 in the high affinity cGMP-binding site. Kinase activity was monitored in cells transfected with wildtype (WT), Cys42Ser or Cys117/195Ser PKGIα that cannot form the inter- or intradisulfide, respectively. HNO enhanced WT kinase activity, an effect significantly attenuated in inter- or intradisulfide-deficient PKGIα. To investigate whether the intradisulfide modulates cGMP binding, real-time imaging was performed in vascular smooth muscle cells expressing a FRET-biosensor comprising the cGMP-binding sites of PKGIα. HNO induced FRET changes similar to those elicited by an increase of cGMP, suggesting that intradisulfide formation is associated with activation of PKGIα. Intradisulfide formation in PKGIα correlated with enhanced HNO-mediated vasorelaxation in mesenteric arteries in vitro and arteriolar dilation in vivo in mice. HNO induces intradisulfide formation in PKGIα, inducing the same effect as cGMP binding, namely kinase activation and thus vasorelaxation.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/química , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , GMP Cíclico/metabolismo , Disulfuros/metabolismo , Mutagénesis Sitio-Dirigida , Óxidos de Nitrógeno/farmacología , Animales , Dominio Catalítico , Células Cultivadas , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Cisteína/genética , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Masculino , Espectrometría de Masas , Ratones , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA