Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Opt Express ; 31(25): 42562-42570, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087627

RESUMEN

We demonstrate a polarization-stable and single-mode grating-coupled surface-emitting laser (GCSEL) with high side-mode suppression ratio (SMSR) of ∼40 dB and orthogonal polarization suppression ratio (OPSR) of ∼25 dB around 795 nm. The fabricated devices have low threshold current of ∼4.8 mA and low electrical resistance of 53 Ω at 25 °C. Meanwhile, a low thermal resistance of ∼1 K/mW is achieved, which is comparable with that of the record of ever reported for vertical-cavity surface-emitting lasers (VCSELs). The far-field divergence angle of surface-emitting beam is ∼14.5°x14.7° at an injection current of 12 mA indicating a relatively good beam quality. Our results open what we believe is a new way to produce polarization-stable single-mode surface-emitting lasers with simple fabrication process. While the GCSEL is specifically designed for quantum sensing applications such as atomic clocks, magnetometers, and gyroscope, its performance in terms of low-power consumption, low thermal resistance, good beam qualities, and wafer-level testing are of particular interest for a wide range of applications.

2.
Opt Express ; 30(12): 21664-21678, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224880

RESUMEN

We report on the extraction of silver losses in the range 10 K-180 K by performing temperature-dependent micro-photoluminescence measurements in conjunction with numerical simulations on silver-coated nanolasers around near-infrared telecommunication wavelengths. By mapping changes in the quality factor of nanolasers into silver-loss variations, the imaginary part of silver permittivity is extracted at cryogenic temperatures. The latter is estimated to reach values an order of magnitude lower than room-temperature values. Temperature-dependent values for the thermo-optic coefficient of III-V semiconductors occupying the cavity are estimated as well. This data is missing from the literature and is crucial for precise device modeling. Our results can be useful for device designing, the theoretical validation of experimental observations as well as the evaluation of thermal effects in silver-coated nanophotonic structures.

3.
Opt Express ; 28(21): 31954-31966, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115159

RESUMEN

Circular dichroism spectroscopy is frequently used to characterize the chiral biomolecules by measuring the absorption spectra contrast between the left-handed circularly polarized light and the right-handed circularly polarized light. Compared with biomolecules, chiral metal plasmonic nanostructures also produce a strong circular dichroism response in the range of near-infrared. However, due to the large damping rate, the non-adjustable resonant frequency of the conventional metals, the applications of chiral metal plasmonic nanostructures in the fields of photoelectric detection and chemical and biochemical sensing are restricted. Here, we present a chiral graphene plasmonic Archimedes' spiral nanostructure that displays a significant circular dichroism response under the excitation of two polarizations of circularly polarized light. By manipulating the material and geometric parameters of the Archimedes' spiral, the stronger circular dichroism responses and modulation of the resonant wavelength are achieved. The optimized plasmonic nanostructure has outstanding refractive index sensing performance, where the sensitivity and figure of merit reach 7000nm/RIU and 68.75, respectively. Our proposed chiral graphene plasmonic Archimedes' spiral nanostructure might find potential applications in the fields of optical detection and high performance of index sensing.

4.
Opt Express ; 27(2): 774-782, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30696158

RESUMEN

We apply the antenna coherence theory in order to evaluate characteristic behavior of phase-coherent VCSEL arrays. Large 19-element phase-locked VCSEL arrays with a near-diffraction-limited beam were firstly realized using proton implantation technology. The central lobe intensity is about four times that of side lobes in far-field patterns. The angular full width at half maximum (FWHM) of the far field lobes is only 1.42 degrees. A good matching between theory and experiment opens new perspectives for optimizing devices.

5.
Phys Chem Chem Phys ; 20(24): 16695-16703, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29877522

RESUMEN

In the mid-infrared and terahertz (THz) regime, graphene supports tunable surface plasmon resonance (SPR) by controlling the chemical potential, which promotes light-matter interaction at the selected wavelength, showing exceptional promise for optoelectronic applications. In this article, we show that the electromagnetic (EM) response of graphene oligomers can be substantially modified by the modification of the local chemical potential, strengthening or reducing the intrinsic plasmonic modes. The effect mechanism is corroborated by a graphene nanocluster composed of 13 nanodisks with D6h symmetry; by transforming to D3h symmetry, the effect mechanism was retained and more available plasmonic resonance modes appeared. The intriguing properties open a new way to design nanodevices made of graphene oligomers with highly efficient photoresponse enhancement and tunable spectral selectivity for highly accurate photodetection.

6.
Opt Express ; 25(19): 22587-22594, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-29041566

RESUMEN

A two-dimensional graphene plasmonic crystal composed of periodically arranged graphene nanodisks is proposed. We show that the band topology effect due to inversion symmetry broken in the proposed plasmonic crystals is obtained by tuning the chemical potential of graphene nanodisks. Utilizing this kind of plasmonic crystal, we constructed N-shaped channels and realized topologically edged transmission within the band gap. Furthermore, topologically protected exterior boundary propagation, which is immune to backscattering, was also achieved by modifying the chemical potential of graphene nanodisks. The proposed graphene plasmonic crystals with ultracompact size are subject only to intrinsic material loss, which may find potential applications in the fields of topological plasmonics and high density nanophotonic integrated systems.

7.
Opt Lett ; 42(23): 4921-4924, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216145

RESUMEN

We demonstrated a simple heart-shaped hole to tailor the axial intensity of a collimated laser beam. This hole is transformed from a soft-boundary one, which avoids the difficulty in fabricating the soft-boundary mask designed by the apodization method, as well as the interference problem caused by the pixel structure of the spatial light modulator. When a collimated light passes through this hole, its axial intensity oscillates less than 11% within a certain distance, while the fluctuation after the circular aperture is up to 200%. We compared the propagation of beams after this hole and a circular aperture experimentally and theoretically. The results show that this hole is a useful tool to get the laser beam with uniform axial intensity.

8.
Opt Lett ; 42(11): 2134-2137, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569863

RESUMEN

We exploit distributed optoelectronic properties enabled by graphene Bragg gratings (GBGs) to realize a hybrid single-mode laser on silicon. This hybrid laser achieves single-mode, continuous-wave operation at 1540 nm with a remarkable side-mode suppression ratio of 48 dB, benefitting from the coupling of the GBGs. These results suggest that graphene thin films can be used as an essential and cost-saving component for hybrid photonic integration on silicon.

9.
Phys Chem Chem Phys ; 19(22): 14671-14679, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28537636

RESUMEN

In this paper, we propose a plasmonic tetramer composed of coupled graphene nanodisks. The transformation from the isolated to the collective modes of the proposed structure is investigated by analysing the whispering-gallery modes and extinction spectra with various inter-nanodisk gap distances. In addition, the effect of introducing a central nanodisk into the tetramer on the extinction spectra is explored, which leads to Fano resonance. Furthermore, the refractive index sensing properties of the proposed graphene plasmonic oligomer have been demonstrated. The proposed nanostructures might pave the road toward the application of graphene plasmonic oligomers in fields such as nanophotonics, and chemical or biochemical sensing.

10.
Opt Express ; 24(25): 28869-28876, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27958552

RESUMEN

We report a 1.3-µm dual-wavelength distributed feedback (DFB) photonic integrated chip with modulation bandwidth enhancement using integrated optical feedback section. The dual-wavelength DFB lasers were realized using the upper separate confinement heterostructure (SCH) selective area growth (SAG) approach. A modified butt-joint technique was also adopted to achieve high-quality active-passive interface and minimize unintentional intra-cavity optical feedbacks. The fabricated photonic chip exhibited stable single mode operations with a wavelength separation of 2.06 nm. The 3-dB modulation bandwidth was enhanced through the photon-photon resonance effect with f3dB > 17 GHz and open eyes up to 25 Gbit/s for both channels were also obtained. The design can also be scaled up to higher channel counts and higher data rate.

11.
Opt Lett ; 41(12): 2787-90, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27304289

RESUMEN

An abruptly autofocusing ring-Airy beam is demonstrated in the terahertz (THz) waveband with a meta-hologram. The designed meta-hologram is composed of gold C-shaped slot antennas, which can realize both phase and amplitude modulation of the incident THz wave. A THz holographic imaging system is utilized to measure the generated ring-Airy beam; an abrupt focus following a parabolic trajectory is subsequently observed. THz ring-Airy beams with different parameters are also generated and investigated. This method can be expanded to other wavebands, such as the visible band, for which the meta-hologram can replace traditional computer-generated holography to avoid undesirable multiple diffraction orders.

12.
Opt Express ; 23(20): 26434-41, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26480156

RESUMEN

Spin of light provides a route to control photons. Spin-based optical devices which can manipulate photons with different spin states are imperative. Here we experimentally demonstrated a spin-selected metasurface lens based on the spin-orbit interaction originated from the Pancharatnam-Berry (PB) phase. The optimized PB phase enables the light with different spin states to be focused on two separated points in the preset plane. Furthermore, the metasurface lens can perform the spin-selected imaging according to the polarization of the illuminating light. Such a spin-based device capacitates a lot of advanced applications for spin-controlled photonics in quantum information processing and communication based on the spin and orbit angular momentum.

13.
Opt Express ; 22(5): 5448-54, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663885

RESUMEN

A four-wavelength silicon hybrid laser array operating at room temperature is realized by evanescently coupling the optical gain of InGaAsP multi-quantum wells to the silicon waveguides of varying widths and patterned with distributed feedback gratings based on selective-area metal bonding technology. The lasers have emission peaks between 1539.9 and 1546.1 nm with a wavelength spacing of about 2.0 nm. The single laser has a typical threshold current of 50 mA and side-mode suppression ratio of 20 dB. The silicon waveguides are fabricated simply by standard photolithography and holographic lithography which are CMOS compatible.

14.
Opt Lett ; 39(16): 4934-7, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25121912

RESUMEN

One-way optical transmission through a composite structure of grating-photonic crystal (PC) is presented. This unidirectional transportation property originates from the diffraction of grating to change the direction of light incident into the PC from pseudobandgaps to passbands of the PC. Numerical simulation shows that a light beam in a certain range of frequencies can transmit the composite structure when it is incident from the grating interface but is completely reflected by the structure when it is incident from the PC interface, which is further verified experimentally. The present structure may provide another more compact way for designing on-chip optical diode-like integrated devices.

15.
Opt Lett ; 39(19): 5527-30, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25360919

RESUMEN

In this Letter, we theoretically studied high-quality (Q) factor plasmonic whispering-gallery modes (WGMs) with ultrasmall mode volumes in graphene monolayer coated semiconductor nanodisks in the mid-infrared range. The influence of the chemical potential, the relaxation time of graphene, and the radius of the nanodisk on the cavity Q factor and the mode volume was numerically investigated. The numerical simulations showed that the plasmonic WGMs excited in this cavity had a deep subwavelength mode volume of 1.4×10(-5)(λ(0)/2n)(3), a cavity Q factor as high as 266 at a temperature lower than 250 K, and, consequently, a large Purcell factor of ∼1.2×10(7) when the chemical potential and relaxation time were assumed to be 0.9 eV and 1.4 ps, respectively. The results provide a possible application of plasmonic WGMs in the integration of nano-optoelectronic devices based on graphene.


Asunto(s)
Grafito/química , Nanoestructuras/química , Fenómenos Ópticos , Semiconductores
16.
Opt Express ; 21(17): 20230-9, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-24105568

RESUMEN

Based on the complementary V-shaped antenna structure, ultrathin vortex phase plates are designed to achieve the terahertz (THz) optical vortices with different topological charges. Utilizing a THz holographic imaging system, the two dimensional complex field information of the generated THz vortex beam with the topological number l=1 is directly obtained. Its far field propagation properties are analyzed in detail, including the rotation, the twist direction, and the Gouy phase shift of the vortex phase. An analytic Laguerre-Gaussian mode is used to simulate and explain the measured phenomena. The experimental and simulation results overlap each other very well.

17.
Opt Express ; 21(24): 30030-8, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24514553

RESUMEN

The plasmonic resonance effect on metasurfaces generates an abrupt phase change. We employ this phase modulation mechanism to design the longitudinal field distribution of an ultrathin terahertz (THz) lens for achieving the axial long-focal-depth (LFD) property. Phase distributions of the designed lens are obtained by the Yang-Gu iterative amplitude-phase retrieval algorithm. By depositing a 100 nm gold film on a 500 µm silicon substrate and etching arrayed V-shaped air holes through the gold film, the designed ultrathin THz lens is fabricated by the micro photolithography technology. Experimental measurements have demonstrated its LFD property, which basically agree with the theoretical simulations. In addition, the designed THz lens possesses a good LFD property with a bandwidth of 200 GHz. It is expected that the designed ultrathin LFD THz lens should have wide potential applications in broadband THz imaging and THz communication systems.


Asunto(s)
Lentes , Membranas Artificiales , Nanotecnología/instrumentación , Radiación Terahertz , Diseño de Equipo , Análisis de Falla de Equipo
18.
Adv Mater ; 35(12): e2204286, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36111553

RESUMEN

Metasurface polarization optics that consist of 2D array of birefringent nano-antennas have proven remarkable capabilities to generate and manipulate vectorial fields with subwavelength resolution and high efficiency. Integrating this new type of metasurface with the standard vertical cavity surface-emitting laser (VCSEL) platform enables an ultracompact and powerful solution to control both phase and polarization properties of the laser on a chip, which allows to structure a VCSEL into vector beams with on-demand wavefronts. Here, this concept is demonstrated by directly generating versatile vector beams from commercially available VCSELs through on-chip integration of high-index dielectric metasurfaces. Experimentally, the versatility of the approach for the development of vectorial VCSELs are validated by implementing a variety of functionalities, including directional emission of multibeam with specified polarizations, vectorial holographic display, and vector vortex beams generations. Notably, the proposed vectorial VCSELs integrated with a single layer of beam shaping metasurface bypass the requirements of multiple cascaded optical components, and thus have the potential to promote the advancements of ultracompact, lightweight, and scalable vector beams sources, enriching and expanding the applications of VCSELs in optical communications, laser manipulation and processing, information encryption, and quantum optics.

19.
Open Life Sci ; 18(1): 20220768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035047

RESUMEN

Non-small cell lung cancer (NSCLC) is often driven by mutations in the epidermal growth factor receptor (EGFR) gene. However, rare mutations such as G719X and S768I lack standard anti-EGFR targeted therapies. Understanding the structural differences between wild-type EGFR and these rare mutants is crucial for developing EGFR-targeted drugs. We performed a systematic analysis using molecular dynamics simulations, essential dynamics (ED), molecular mechanics Poisson-Boltzmann surface area, and free energy calculation methods to compare the kinetic properties, molecular motion, and free energy distribution between wild-type EGFR and the rare mutants' structures G719X-EGFR, S768I-EGFR, and G719X + S768I-EGFR. Our results showed that S768I-EGFR and G719X + S768I-EGFR have higher global and local conformational flexibility and lower thermal and global structural stability than WT-EGFR. ED analysis revealed different molecular motion patterns between S768I-EGFR, G719X + S768I-EGFR, and WT-EGFR. The A-loop and αC-helix, crucial structural elements related to the active state, showed a tendency toward active state development, providing a molecular mechanism explanation for NSCLC caused by EGFR S768I and EGFR G719C + S768I mutations. The present study may be helpful in the development of new EGFR-targeted drugs based on the structure of rare mutations. Our findings may aid in developing new targeted treatments for patients with EGFR S768I and EGFR G719X + S768I mutations.

20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA