Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Genet ; 143(5): 721-734, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691166

RESUMEN

TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.


Asunto(s)
Estudios de Asociación Genética , Pérdida Auditiva , Proteínas de la Membrana , Serina Endopeptidasas , Humanos , Femenino , Masculino , Serina Endopeptidasas/genética , Adulto , Proteínas de la Membrana/genética , Pérdida Auditiva/genética , Niño , Persona de Mediana Edad , Adolescente , Preescolar , Genotipo , Estudios de Cohortes , Fenotipo , Mutación Missense , Estudios Transversales , Adulto Joven , Estudios Retrospectivos , Anciano , Proteínas de Neoplasias
2.
J Cell Sci ; 134(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33975343

RESUMEN

Homozygosity for the R51Q mutation in sorting nexin 10 (SNX10) inactivates osteoclasts (OCLs) and induces autosomal recessive osteopetrosis in humans and in mice. We show here that the fusion of wild-type murine monocytes to form OCLs is highly regulated, and that its extent is limited by blocking fusion between mature OCLs. In contrast, monocytes from homozygous R51Q SNX10 mice fuse uncontrollably, forming giant dysfunctional OCLs that can become 10- to 100-fold larger than their wild-type counterparts. Furthermore, mutant OCLs display reduced endocytotic activity, suggesting that their deregulated fusion is due to alterations in membrane homeostasis caused by loss of SNX10 function. This is supported by the finding that the R51Q SNX10 protein is unstable and exhibits altered lipid-binding properties, and is consistent with a key role for SNX10 in vesicular trafficking. We propose that OCL size and functionality are regulated by a cell-autonomous SNX10-dependent mechanism that downregulates fusion between mature OCLs. The R51Q mutation abolishes this regulatory activity, leading to excessive fusion, loss of bone resorption capacity and, consequently, to an osteopetrotic phenotype in vivo. This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Resorción Ósea , Osteopetrosis , Animales , Resorción Ósea/genética , Ratones , Mutación/genética , Osteoclastos , Nexinas de Clasificación/genética
3.
Proc Natl Acad Sci U S A ; 117(33): 20070-20076, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747562

RESUMEN

The genetic characterization of a common phenotype for an entire population reveals both the causes of that phenotype for that place and the power of family-based, population-wide genomic analysis for gene and mutation discovery. We characterized the genetics of hearing loss throughout the Palestinian population, enrolling 2,198 participants from 491 families from all parts of the West Bank and Gaza. In Palestinian families with no prior history of hearing loss, we estimate that 56% of hearing loss is genetic and 44% is not genetic. For the great majority (87%) of families with inherited hearing loss, panel-based genomic DNA sequencing, followed by segregation analysis of large kindreds and transcriptional analysis of participant RNA, enabled identification of the causal genes and mutations, including at distant noncoding sites. Genetic heterogeneity of hearing loss was striking with respect to both genes and alleles: The 337 solved families harbored 143 different mutations in 48 different genes. For one in four solved families, a transcription-altering mutation was the responsible allele. Many of these mutations were cryptic, either exonic alterations of splice enhancers or silencers or deeply intronic events. Experimentally calibrated in silico analysis of transcriptional effects yielded inferences of high confidence for effects on splicing even of mutations in genes not expressed in accessible tissue. Most (58%) of all hearing loss in the population was attributable to consanguinity. Given the ongoing decline in consanguineous marriage, inherited hearing loss will likely be much rarer in the next generation.


Asunto(s)
Pérdida Auditiva/congénito , Pérdida Auditiva/genética , Adolescente , Adulto , Alelos , Niño , Preescolar , Consanguinidad , Exones , Femenino , Genómica , Humanos , Masculino , Persona de Mediana Edad , Medio Oriente , Mutación , Linaje , Adulto Joven
5.
Clin Genet ; 98(4): 353-364, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33111345

RESUMEN

Mutations in more than 150 genes are responsible for inherited hearing loss, with thousands of different, severe causal alleles that vary among populations. The Israeli Jewish population includes communities of diverse geographic origins, revealing a wide range of deafness-associated variants and enabling clinical characterization of the associated phenotypes. Our goal was to identify the genetic causes of inherited hearing loss in this population, and to determine relationships among genotype, phenotype, and ethnicity. Genomic DNA samples from informative relatives of 88 multiplex families, all of self-identified Jewish ancestry, with either non-syndromic or syndromic hearing loss, were sequenced for known and candidate deafness genes using the HEar-Seq gene panel. The genetic causes of hearing loss were identified for 60% of the families. One gene was encountered for the first time in human hearing loss: ATOH1 (Atonal), a basic helix-loop-helix transcription factor responsible for autosomal dominant progressive hearing loss in a five-generation family. Our results show that genomic sequencing with a gene panel dedicated to hearing loss is effective for genetic diagnoses in a diverse population. Comprehensive sequencing enables well-informed genetic counseling and clinical management by medical geneticists, otolaryngologists, audiologists, and speech therapists and can be integrated into newborn screening for deafness.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sordera/genética , Predisposición Genética a la Enfermedad , Pérdida Auditiva/genética , Adolescente , Adulto , Niño , Preescolar , Sordera/epidemiología , Sordera/patología , Femenino , Estudios de Asociación Genética , Pérdida Auditiva/epidemiología , Pérdida Auditiva/patología , Humanos , Israel/epidemiología , Judíos/genética , Masculino , Linaje , Adulto Joven
6.
Epilepsia ; 60(6): e67-e73, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31111464

RESUMEN

Despite tremendous progress through next generation sequencing technologies, familial focal epilepsies are insufficiently understood. We sought to identify the genetic basis in multiplex Palestinian families with familial focal epilepsy with variable foci (FFEVF). Family I with 10 affected individuals and Family II with five affected individuals underwent detailed phenotyping over three generations. The phenotypic spectrum of the two families varied from nonlesional focal epilepsy including nocturnal frontal lobe epilepsy to severe structural epilepsy due to hemimegalencephaly. Whole-exome sequencing and single nucleotide polymorphism array analysis revealed pathogenic variants in NPRL3 in each family, a partial ~38-kb deletion encompassing eight exons (exons 8-15) and the 3'-untranslated region of the NPRL3 gene in Family I, and a de novo nonsense variant c.1063C>T, p.Gln355* in Family II. Furthermore, we identified a truncating variant in the PDCD10 gene in addition to the NPRL3 variant in a patient with focal epilepsy from Family I. The individual also had developmental delay and multiple cerebral cavernomas, possibly demonstrating a digenic contribution to the individual's phenotype. Our results implicate the association of NPRL3 with hemimegalencephaly, expanding the phenotypic spectrum of NPRL3 in FFEVF and underlining that partial deletions are part of the genotypic spectrum of NPRL3 variants.


Asunto(s)
Epilepsias Parciales/complicaciones , Epilepsias Parciales/genética , Proteínas Activadoras de GTPasa/genética , Megalencefalia/etiología , Megalencefalia/genética , Adolescente , Adulto , Edad de Inicio , Proteínas Reguladoras de la Apoptosis/genética , Niño , Preescolar , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/genética , Epilepsia del Lóbulo Frontal/complicaciones , Epilepsia del Lóbulo Frontal/genética , Exoma/genética , Familia , Femenino , Eliminación de Gen , Variación Genética , Genotipo , Humanos , Lactante , Masculino , Proteínas de la Membrana/genética , Linaje , Polimorfismo de Nucleótido Simple/genética , Proteínas Proto-Oncogénicas/genética
7.
Mamm Genome ; 27(1-2): 29-46, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26662512

RESUMEN

The planar cell polarity (PCP) pathway is responsible for polarizing and orienting cochlear hair cells during development through movement of a primary cilium, the kinocilium. GPSM2/LGN, a mitotic spindle-orienting protein associated with deafness in humans, is a PCP effector involved in kinocilium migration. Here, we link human and mouse truncating mutations in the GPSM2/LGN gene, both leading to hearing loss. The human variant, p.(Trp326*), was identified by targeted genomic enrichment of genes associated with deafness, followed by massively parallel sequencing. Lgn (ΔC) mice, with a targeted deletion truncating the C-terminal GoLoco motifs, are profoundly deaf and show misorientation of the hair bundle and severe malformations in stereocilia shape that deteriorates over time. Full-length protein levels are greatly reduced in mutant mice, with upregulated mRNA levels. The truncated Lgn (ΔC) allele is translated in vitro, suggesting that mutant mice may have partially functioning Lgn. Gαi and aPKC, known to function in the same pathway as Lgn, are dependent on Lgn for proper localization. The polarization of core PCP proteins is not affected in Lgn mutants; however, Lgn and Gαi are misoriented in a PCP mutant, supporting the role of Lgn as a PCP effector. The kinocilium, previously shown to be dependent on Lgn for robust localization, is essential for proper localization of Lgn, as well as Gαi and aPKC, suggesting that cilium function plays a role in positioning of apical proteins. Taken together, our data provide a mechanism for the loss of hearing found in human patients with GPSM2/LGN variants.


Asunto(s)
Proteínas Portadoras/genética , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva Sensorineural/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Quinasa C/genética , Alelos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Movimiento Celular , Polaridad Celular , Cilios/genética , Cilios/metabolismo , Cilios/patología , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Motivos de Nucleótidos , Linaje , Proteína Quinasa C/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
8.
J Med Genet ; 52(9): 636-41, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26070314

RESUMEN

BACKGROUND: Familial glucocorticoid deficiency (FGD) reflects specific failure of adrenocortical glucocorticoid production in response to adrenocorticotropic hormone (ACTH). Most cases are caused by mutations encoding ACTH-receptor components (MC2R, MRAP) or the general steroidogenesis protein (StAR). Recently, nicotinamide nucleotide transhydrogenase (NNT) mutations were found to cause FGD through a postulated mechanism resulting from decreased detoxification of reactive oxygen species (ROS) in adrenocortical cells. METHODS AND RESULTS: In a consanguineous Palestinian family with combined mineralocorticoid and glucocorticoid deficiency, whole-exome sequencing revealed a novel homozygous NNT_c.598 G>A, p.G200S, mutation. Another affected, unrelated Palestinian child was also homozygous for NNT_p.G200S. Haplotype analysis showed this mutation is ancestral; carrier frequency in ethnically matched controls is 1/200. Assessment of patient fibroblasts for ROS production, ATP content and mitochondrial morphology showed that biallelic NNT mutations result in increased levels of ROS, lower ATP content and morphological mitochondrial defects. CONCLUSIONS: This report of a novel NNT mutation, p.G200S, expands the phenotype of NNT mutations to include mineralocorticoid deficiency. We provide the first patient-based evidence that NNT mutations can cause oxidative stress and both phenotypic and functional mitochondrial defects. These results directly demonstrate the importance of NNT to mitochondrial function in the setting of adrenocortical insufficiency.


Asunto(s)
Glucocorticoides/deficiencia , Mineralocorticoides/deficiencia , Mutación , NADP Transhidrogenasas/genética , Receptores de Mineralocorticoides/metabolismo , Árabes , Consanguinidad , Homocigoto , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Estrés Oxidativo/genética , Análisis de Secuencia de ADN
9.
J Med Genet ; 52(6): 391-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25873734

RESUMEN

BACKGROUND: Primary gonadal failure is characterised by primary amenorrhoea or early menopause in females, and oligospermia or azoospermia in males. Variants of the minichromosome maintenance complex component 8 gene (MCM8) have recently been shown to be significantly associated with women's menopausal age in genome-wide association studies. Furthermore, MCM8-knockout mice are sterile. The objective of this study was to elucidate the genetic aetiology of gonadal failure in two consanguineous families presenting as primary amenorrhoea in the females and as small testes and azoospermia in a male. METHODS AND RESULTS: Using whole exome sequencing, we identified two novel homozygous mutations in the MCM8 gene: a splice (c.1954-1G>A) and a frameshift (c.1469-1470insTA). In each consanguineous family the mutation segregated with the disease and both mutations were absent in 100 ethnically matched controls. The splice mutation led to lack of the wild-type transcript and three different aberrant transcripts predicted to result in either truncated or significantly shorter proteins. Quantitative analysis of the aberrantly spliced transcripts showed a significant decrease in total MCM8 message in affected homozygotes for the mutation, and an intermediate decrease in heterozygous family members. Chromosomal breakage following exposure to mitomcyin C was significantly increased in cells from homozygous individuals for c.1954-1G>A, as well as c.1469-1470insTA. CONCLUSIONS: MCM8, a component of the pre-replication complex, is crucial for gonadal development and maintenance in humans-both males and females. These findings provide new insights into the genetic disorders of infertility and premature menopause in women.


Asunto(s)
Trastornos Gonadales/genética , Componente 8 del Complejo de Mantenimiento de Minicromosoma/genética , Mutación , Adolescente , Alelos , Inestabilidad Cromosómica , Rotura Cromosómica , Mapeo Cromosómico , Consanguinidad , Variaciones en el Número de Copia de ADN , ADN Complementario/genética , Exoma , Femenino , Expresión Génica , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Trastornos Gonadales/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Recién Nacido , Masculino , Ovario/metabolismo , Linaje , Polimorfismo de Nucleótido Simple , Sitios de Empalme de ARN , ARN Mensajero/genética , Hermanos
10.
Am J Hum Genet ; 90(6): 1088-93, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22578326

RESUMEN

Autosomal-recessive inheritance, severe to profound sensorineural hearing loss, and partial agenesis of the corpus callosum are hallmarks of the clinically well-established Chudley-McCullough syndrome (CMS). Although not always reported in the literature, frontal polymicrogyria and gray matter heterotopia are uniformly present, whereas cerebellar dysplasia, ventriculomegaly, and arachnoid cysts are nearly invariant. Despite these striking brain malformations, individuals with CMS generally do not present with significant neurodevelopmental abnormalities, except for hearing loss. Homozygosity mapping and whole-exome sequencing of DNA from affected individuals in eight families (including the family in the first report of CMS) revealed four molecular variations (two single-base deletions, a nonsense mutation, and a canonical splice-site mutation) in the G protein-signaling modulator 2 gene, GPSM2, that underlie CMS. Mutations in GPSM2 have been previously identified in people with profound congenital nonsyndromic hearing loss (NSHL). Subsequent brain imaging of these individuals revealed frontal polymicrogyria, abnormal corpus callosum, and gray matter heterotopia, consistent with a CMS diagnosis, but no ventriculomegaly. The gene product, GPSM2, is required for orienting the mitotic spindle during cell division in multiple tissues, suggesting that the sensorineural hearing loss and characteristic brain malformations of CMS are due to defects in asymmetric cell divisions during development.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Quistes Aracnoideos/genética , Encefalopatías/genética , Encéfalo/anomalías , Pérdida Auditiva Sensorineural/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Adolescente , Adulto , Agenesia del Cuerpo Calloso/patología , Quistes Aracnoideos/patología , Encéfalo/patología , Niño , Preescolar , Salud de la Familia , Femenino , Eliminación de Gen , Pérdida Auditiva Sensorineural/patología , Homocigoto , Humanos , Lactante , Masculino , Análisis de Secuencia de ADN
11.
Am J Hum Genet ; 91(5): 872-82, 2012 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-23122586

RESUMEN

Hereditary hearing loss is characterized by a high degree of genetic heterogeneity. Here we present OTOGL mutations, a homozygous one base pair deletion (c.1430 delT) causing a frameshift (p.Val477Glufs(∗)25) in a large consanguineous family and two compound heterozygous mutations, c.547C>T (p.Arg183(∗)) and c.5238+5G>A, in a nonconsanguineous family with moderate nonsyndromic sensorineural hearing loss. OTOGL maps to the DFNB84 locus at 12q21.31 and encodes otogelin-like, which has structural similarities to the epithelial-secreted mucin protein family. We demonstrate that Otogl is expressed in the inner ear of vertebrates with a transcription level that is high in embryonic, lower in neonatal, and much lower in adult stages. Otogelin-like is localized to the acellular membranes of the cochlea and the vestibular system and to a variety of inner ear cells located underneath these membranes. Knocking down of otogl with morpholinos in zebrafish leads to sensorineural hearing loss and anatomical changes in the inner ear, supporting that otogelin-like is essential for normal inner ear function. We propose that OTOGL mutations affect the production and/or function of acellular structures of the inner ear, which ultimately leads to sensorineural hearing loss.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Mutación , Adolescente , Animales , Preescolar , Aberraciones Cromosómicas , Cóclea/metabolismo , Cóclea/patología , Exoma , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Pérdida Auditiva Sensorineural/diagnóstico , Humanos , Mutación INDEL , Masculino , Ratones , Polimorfismo de Nucleótido Simple , Ratas , Pez Cebra
12.
Exp Dermatol ; 24(8): 618-22, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25939713

RESUMEN

Alopecia-neurological defects-endocrinopathy (ANE) syndrome is a rare inherited hair disorder, which was shown to result from decreased expression of the RNA-binding motif protein 28 (RBM28). In this study, we attempted to delineate the role of RBM28 in hair biology. First, we sought to obtain evidence for the direct involvement of RBM28 in hair growth. When RBM28 was downregulated in human hair follicle (HF) organ cultures, we observed catagen induction and HF growth arrest, indicating that RBM28 is necessary for normal hair growth. We also aimed at identifying molecular targets of RBM28. Given that an RBM28 homologue was recently found to regulate miRNA biogenesis in C. elegans and given the known pivotal importance of miRNAs for proper hair follicle development, we studied global miRNA expression profile in cells knocked down for RBM28. This analysis revealed that RBM28 controls the expression of miR-203. miR-203 was found to regulate in turn TP63, encoding the transcription factor p63, which is critical for hair morphogenesis. In conclusion, RBM28 contributes to HF growth regulation through modulation of miR-203 and p63 activity.


Asunto(s)
Alopecia/metabolismo , Enfermedades del Sistema Endocrino/metabolismo , Regulación de la Expresión Génica , Folículo Piloso/metabolismo , Discapacidad Intelectual/metabolismo , MicroARNs/fisiología , Proteínas de Unión al ARN/fisiología , Factores de Transcripción/fisiología , Proteínas Supresoras de Tumor/fisiología , Alopecia/fisiopatología , Células Cultivadas , Enfermedades del Sistema Endocrino/fisiopatología , Genes Reporteros , Cabello/crecimiento & desarrollo , Folículo Piloso/crecimiento & desarrollo , Humanos , Discapacidad Intelectual/fisiopatología , Queratinocitos/metabolismo , Morfogénesis , Técnicas de Cultivo de Órganos , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Transfección , Regulación hacia Arriba
13.
Genome Med ; 16(1): 4, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178268

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) has significantly transformed the landscape of identifying disease-causing genes associated with genetic disorders. However, a substantial portion of sequenced patients remains undiagnosed. This may be attributed not only to the challenges posed by harder-to-detect variants, such as non-coding and structural variations but also to the existence of variants in genes not previously associated with the patient's clinical phenotype. This study introduces EvORanker, an algorithm that integrates unbiased data from 1,028 eukaryotic genomes to link mutated genes to clinical phenotypes. METHODS: EvORanker utilizes clinical data, multi-scale phylogenetic profiling, and other omics data to prioritize disease-associated genes. It was evaluated on solved exomes and simulated genomes, compared with existing methods, and applied to 6260 knockout genes with mouse phenotypes lacking human associations. Additionally, EvORanker was made accessible as a user-friendly web tool. RESULTS: In the analyzed exomic cohort, EvORanker accurately identified the "true" disease gene as the top candidate in 69% of cases and within the top 5 candidates in 95% of cases, consistent with results from the simulated dataset. Notably, EvORanker outperformed existing methods, particularly for poorly annotated genes. In the case of the 6260 knockout genes with mouse phenotypes, EvORanker linked 41% of these genes to observed human disease phenotypes. Furthermore, in two unsolved cases, EvORanker successfully identified DLGAP2 and LPCAT3 as disease candidates for previously uncharacterized genetic syndromes. CONCLUSIONS: We highlight clade-based phylogenetic profiling as a powerful systematic approach for prioritizing potential disease genes. Our study showcases the efficacy of EvORanker in associating poorly annotated genes to disease phenotypes observed in patients. The EvORanker server is freely available at https://ccanavati.shinyapps.io/EvORanker/ .


Asunto(s)
Genómica , Enfermedades Raras , Humanos , Animales , Ratones , Enfermedades Raras/genética , Filogenia , Genómica/métodos , Fenotipo , Exoma , 1-Acilglicerofosfocolina O-Aciltransferasa/genética
14.
Am J Hum Genet ; 87(1): 90-4, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20602914

RESUMEN

Massively parallel sequencing of targeted regions, exomes, and complete genomes has begun to dramatically increase the pace of discovery of genes responsible for human disorders. Here we describe how exome sequencing in conjunction with homozygosity mapping led to rapid identification of the causative allele for nonsyndromic hearing loss DFNB82 in a consanguineous Palestinian family. After filtering out worldwide and population-specific polymorphisms from the whole exome sequence, only a single deleterious mutation remained in the homozygous region linked to DFNB82. The nonsense mutation leads to an early truncation of the G protein signaling modulator GPSM2, a protein that is essential for maintenance of cell polarity and spindle orientation. In the mouse inner ear, GPSM2 is localized to apical surfaces of hair cells and supporting cells and is most highly expressed during embryonic development. Identification of GPSM2 as essential to the development of normal hearing suggests dysregulation of cell polarity as a mechanism underlying hearing loss.


Asunto(s)
Pérdida Auditiva/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Animales , Polaridad Celular , Codón sin Sentido , Consanguinidad , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Células Ciliadas Auditivas/metabolismo , Homocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Mutación
15.
Am J Hum Genet ; 87(1): 101-9, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20602916

RESUMEN

Age-related hearing loss is due to death over time, primarily by apoptosis, of hair cells in the inner ear. Studies of mutant genes responsible for inherited progressive hearing loss have suggested possible mechanisms for hair cell death, but critical connections between these mutations and the causes of progressive hearing loss have been elusive. In an Israeli kindred, dominant, adult-onset, progressive nonsyndromic hearing loss DFNA51 is due to a tandem inverted genomic duplication of 270 kb that includes the entire wild-type gene encoding the tight junction protein TJP2 (ZO-2). In the mammalian inner ear, TJP2 is expressed mainly in tight junctions, and also in the cytoplasm and nuclei. TJP2 expression normally decreases with age from embryonic development to adulthood. In cells of affected family members, TJP2 transcript and protein are overexpressed, leading to decreased phosphorylation of GSK-3beta and to altered expression of genes that regulate apoptosis. These results suggest that TJP2- and GSK-3beta-mediated increased susceptibility to apoptosis of cells of the inner ear is the mechanism for adult-onset hearing loss in this kindred and may serve as one model for age-related hearing loss in the general population.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Pérdida Auditiva/genética , Proteínas de la Membrana/genética , Uniones Estrechas/metabolismo , Animales , Oído Interno/embriología , Oído Interno/crecimiento & desarrollo , Oído Interno/metabolismo , Duplicación de Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Pérdida Auditiva/metabolismo , Humanos , Proteínas de la Membrana/biosíntesis , Ratones , Linaje , Fosforilación , Proteína de la Zonula Occludens-2
16.
Am J Hum Genet ; 86(5): 797-804, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20451170

RESUMEN

More than 270 million people worldwide have hearing loss that affects normal communication. Although astonishing progress has been made in the identification of more than 50 genes for deafness during the past decade, the majority of deafness genes are yet to be identified. In this study, we mapped a previously unknown autosomal-recessive nonsyndromic sensorineural hearing loss locus (DFNB91) to chromosome 6p25 in a consanguineous Turkish family. The degree of hearing loss was moderate to severe in affected individuals. We subsequently identified a nonsense mutation (p.E245X) in SERPINB6, which is located within the linkage interval for DFNB91 and encodes for an intracellular protease inhibitor. The p.E245X mutation cosegregated in the family as a completely penetrant autosomal-recessive trait and was absent in 300 Turkish controls. The mRNA expression of SERPINB6 was reduced and production of protein was absent in the peripheral leukocytes of homozygotes, suggesting that the hearing loss is due to loss of function of SERPINB6. We also demonstrated that SERPINB6 was expressed primarily in the inner ear hair cells. We propose that SERPINB6 plays an important role in the inner ear in the protection against leakage of lysosomal content during stress and that loss of this protection results in cell death and sensorineural hearing loss.


Asunto(s)
Codón sin Sentido , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva/genética , Mutación , Serpinas/genética , Consanguinidad , Familia , Herencia , Homocigoto , Humanos
17.
J Basic Clin Physiol Pharmacol ; 23(3): 93-7, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22962211

RESUMEN

High-throughput sequencing is changing the face of genetic diagnosis and counseling. While in the past, it would take on average 1 to 5 years to identify a mutation leading to deafness, today, the genetic basis for deafness can be determined within months in a child or adult with inherited hearing loss. Obstacles and challenges still remain, but the field is changing at a dramatic rate, making gene discovery a much easier and more efficient task than in the past.


Asunto(s)
Sordera/genética , Predisposición Genética a la Enfermedad , Genómica , Homocigoto , Humanos
18.
Cell Physiol Biochem ; 28(3): 477-84, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22116360

RESUMEN

BACKGROUND: Pendrin is a transport protein exchanging chloride for other anions, such as iodide in the thyroid gland or bicarbonate in the inner ear. Mutations in the SLC26A4 gene encoding for pendrin are responsible for both syndromic (Pendred syndrome) and non-syndromic (non-syndromic enlarged vestibular aqueduct, EVA) hearing loss. Besides clinical and radiological assessments, molecular and functional studies are essential for the correct diagnosis of Pendred syndrome and non-syndromic EVA. While a broad spectrum of mutations found in the Caucasian population has been functionally characterized, little is known about mutations specifically occurring in the populations of the Middle East. Here we show the characterization of the ion transport activity of three pendrin mutations previously found in deaf patients with EVA in the Israeli Jewish and Palestinian Arab populations, i.e. V239D, G334V X335 and I487Y FSX39. METHODS: Wild type and mutated pendrin allelic variants were functionally characterized in a heterologous over-expression system. The Cl(-)/I(-) and Cl(-)/OH(-) exchange activities were assessed by fluorometric methods suitable for measuring iodide fluxes and the intracellular pH. RESULTS: Both the Cl(-)/I(-) and the Cl(-)/OH(-) exchange activities of pendrin V239D, G334V X335 and I487Y FSX39 were significantly reduced with respect to the wild type, with V239D displaying a residual iodide transport. CONCLUSION: Functional assays confirmed the diagnosis of non-syndromic EVA due to SLC26A4 mutations performed by radiological and molecular tests in deaf patients belonging to the Israeli Jewish and Palestinian Arab populations. The new finding that the V239D mutation displays residual function suggests that the symptoms caused by this mutation could be ameliorated by a pendrin 'activator', if available.


Asunto(s)
Árabes/genética , Judíos/genética , Proteínas de Transporte de Membrana/genética , Mutación , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aniones/metabolismo , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/genética , Humanos , Transporte Iónico , Israel , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Transportadores de Sulfato
19.
Mamm Genome ; 22(3-4): 170-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21165622

RESUMEN

The motor protein myosin IIIA is critical for maintenance of normal hearing. Homozygosity and compound heterozygosity for loss-of-function mutations in MYO3A, which encodes myosin IIIA, are responsible for inherited human progressive hearing loss DFNB30. To further evaluate this hearing loss, we constructed a mouse model, Myo3a(KI/KI), that harbors the mutation equivalent to the nonsense allele responsible for the most severe human phenotype. Myo3a(KI/KI) mice were compared to their wild-type littermates. Myosin IIIA, with a unique N-terminal kinase domain and a C-terminal actin-binding domain, localizes to the tips of stereocilia in wild-type mice but is absent in the mutant. The phenotype of the Myo3a(KI/KI) mouse parallels the phenotype of human DFNB30. Hearing loss, as measured by auditory brainstem response, is reduced and progresses significantly with age. Vestibular function is normal. Outer hair cells of Myo3a(KI/KI) mice degenerate with age in a pattern consistent with their progressive hearing loss.


Asunto(s)
Modelos Animales de Enfermedad , Pérdida Auditiva/metabolismo , Ratones , Cadenas Pesadas de Miosina/deficiencia , Miosina Tipo III/deficiencia , Factores de Edad , Animales , Secuencia de Bases , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Pérdida Auditiva/genética , Pérdida Auditiva/fisiopatología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Miosina Tipo III/química , Miosina Tipo III/genética , Estructura Terciaria de Proteína
20.
J Med Genet ; 47(9): 643-5, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20472657

RESUMEN

BACKGROUND: Moderate to severe prelingual hearing impairment (DFNB84) was observed in an extended consanguineous Palestinian kindred. All affected relatives shared a 12.5 MB homozygous haplotype on chromosome 12q21 with lod score 4.30. This homozygous region harbours the protein tyrosine phosphatase receptor Q gene PTPRQ, which is known to be essential to hearing in mouse. METHODS: Candidate genes in the 12.5 MB homozygous region were characterized genomically and sequenced in deaf and hearing relatives in the family. RESULTS: Sequence of PTPRQ in affected individuals in the extended kindred revealed c.1285C-->T, leading to p.Gln429Stop. This nonsense mutation co-segregated with hearing loss in the family and was homozygous in all affected relatives. The mutation did not appear among 288 Palestinian controls (576 chromosomes), all adults with normal hearing. No homozygous mutations in PTPRQ appeared in any of 218 other probands with hearing loss. CONCLUSION: Identification of the DFNB84 gene represents the first identification of PTPRQ mutation in human hearing loss.


Asunto(s)
Cilios/genética , Codón sin Sentido/genética , Sitios Genéticos/genética , Pérdida Auditiva/enzimología , Pérdida Auditiva/genética , Proteínas de la Membrana/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Adulto , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Análisis Mutacional de ADN , Familia , Femenino , Humanos , Patrón de Herencia/genética , Masculino , Ratones , Datos de Secuencia Molecular , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA