RESUMEN
The lower respiratory tract is a hierarchical network of compliant tubular structures that are made from extracellular matrix proteins with a wall lined by an epithelium. While microfluidic airway-on-a-chip models incorporate the effects of shear and stretch on the epithelium, week-long air-liquid-interface culture at physiological shear stresses, the circular cross-section, and compliance of native airway walls have yet to be recapitulated. To overcome these limitations, a collagen tube-based airway model is presented. The lumen is lined with a confluent epithelium during two-week continuous perfusion with warm, humid air while presenting culture medium from the outside and compensating for evaporation. The model recapitulates human small airways in extracellular matrix composition and mechanical microenvironment, allowing for the first time dynamic studies of elastocapillary phenomena associated with regular breathing and mechanical ventilation, as well as their impacts on the epithelium. A case study reveales increasing damage to the epithelium during repetitive collapse and reopening cycles as opposed to overdistension, suggesting expiratory flow resistance to reduce atelectasis. The model is expected to promote systematic comparisons between different clinically used ventilation strategies and, more broadly, to enhance human organ-on-a-chip platforms for a variety of tubular tissues.
Asunto(s)
Colágeno , Células Epiteliales , Humanos , Células Epiteliales/citología , Colágeno/química , Dispositivos Laboratorio en un ChipRESUMEN
Thin cell culture membranes in organ-on-a-chip (OOC) devices are used to model a wide range of thin tissues. While early and most current platforms use microporous or fibrous elastomeric or thermoplastic membranes, there is an emerging class of devices using extra-cellular matrix (ECM) protein-based membranes to improve their biological relevance. These ECM-based membranes present physiologically relevant properties, but they are difficult to integrate into OOC devices due to their relative fragility. Additionally, the specialized fabrication methods developed to date make comparison between methods difficult. This work presents the development and characterization of a method to produce ultrathin matrix-derived membranes (UMM) in OOC devices that requires only a preassembled thermoplastic device and a micropipette, decoupling the device and UMM fabrication processes. Control over the thickness and permeability of the UMM is demonstrated, along with integration of the UMM in a device enabling high-resolution on-chip microscopy. The reliability of the UMM fabrication method is leveraged to develop a medium-throughput well-plate format device with 32 independent UMM-integrated samples. Finally, proof-of-concept cell culture experiments are demonstrated. Due to its simplicity and controllability, the presented method has the potential to overcome technical barriers preventing wider adoption of physiologically relevant ECM-based membranes in OOC devices.