Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(3): 036101, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37540855

RESUMEN

The local atomic structure of SnSe was characterized across its orthorhombic-to-orthorhombic structural phase transition using x-ray pair distribution function analysis. Substantial Sn displacements with a dipolar character persist in the high-symmetry high-temperature phase, albeit with a symmetry different from that of the ordered displacements below the transition. The analysis implies that the transition is neither order-disorder nor displacive but rather a complex crossover. Robust ferrocoupled SnSe intralayer distortions suggest a ferroelectriclike instability as the driving force. These local symmetry-lowering Sn displacements are likely integral to the ultralow lattice thermal conductivity mechanism in SnSe.

2.
Phys Rev Lett ; 130(12): 126401, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37027842

RESUMEN

The recently discovered layered kagome metals of composition AV_{3}Sb_{5} (A=K, Rb, Cs) exhibit a complex interplay among superconductivity, charge density wave order, topologically nontrivial electronic band structure and geometrical frustration. Here, we probe the electronic band structure underlying these exotic correlated electronic states in CsV_{3}Sb_{5} with quantum oscillation measurements in pulsed fields up to 86 T. The high-field data reveal a sequence of magnetic breakdown orbits that allows the construction of a model for the folded Fermi surface of CsV_{3}Sb_{5}. The dominant features are large triangular Fermi surface sheets that cover almost half the folded Brillouin zone. These sheets have not yet been detected in angle resolved photoemission spectroscopy and display pronounced nesting. The Berry phases of the electron orbits have been deduced from Landau level fan diagrams near the quantum limit without the need for extrapolations, thereby unambiguously establishing the nontrivial topological character of several electron bands in this kagome lattice superconductor.

3.
Nat Mater ; 20(7): 977-983, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33723420

RESUMEN

Lead halide perovskites exhibit structural instabilities and large atomic fluctuations thought to impact their optical and thermal properties, yet detailed structural and temporal correlations of their atomic motions remain poorly understood. Here, these correlations are resolved in CsPbBr3 crystals using momentum-resolved neutron and X-ray scattering measurements as a function of temperature, complemented with first-principles simulations. We uncover a striking network of diffuse scattering rods, arising from the liquid-like damping of low-energy Br-dominated phonons, reproduced in our simulations of the anharmonic phonon self-energy. These overdamped modes cover a continuum of wave vectors along the edges of the cubic Brillouin zone, corresponding to two-dimensional sheets of correlated rotations in real space, and could represent precursors to proposed two-dimensional polarons. Further, these motions directly impact the electronic gap edge states, linking soft anharmonic lattice dynamics and optoelectronic properties. These results provide insights into the highly unusual atomic dynamics of halide perovskites, relevant to further optimization of their optical and thermal properties.

4.
Phys Rev Lett ; 126(15): 157001, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929261

RESUMEN

In this Letter, we describe quantitative magnetic imaging of superconducting vortices in RbEuFe_{4}As_{4} in order to investigate the unique interplay between the magnetic and superconducting sublattices. Our scanning Hall microscopy data reveal a pronounced suppression of the superfluid density near the magnetic ordering temperature in good qualitative agreement with a recently developed model describing the suppression of superconductivity by correlated magnetic fluctuations. These results indicate a pronounced exchange interaction between the superconducting and magnetic subsystems in RbEuFe_{4}As_{4}, with important implications for future investigations of physical phenomena arising from the interplay between them.

5.
Nanotechnology ; 32(4): 042003, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33155576

RESUMEN

This roadmap on Nanotechnology for Catalysis and Solar Energy Conversion focuses on the application of nanotechnology in addressing the current challenges of energy conversion: 'high efficiency, stability, safety, and the potential for low-cost/scalable manufacturing' to quote from the contributed article by Nathan Lewis. This roadmap focuses on solar-to-fuel conversion, solar water splitting, solar photovoltaics and bio-catalysis. It includes dye-sensitized solar cells (DSSCs), perovskite solar cells, and organic photovoltaics. Smart engineering of colloidal quantum materials and nanostructured electrodes will improve solar-to-fuel conversion efficiency, as described in the articles by Waiskopf and Banin and Meyer. Semiconductor nanoparticles will also improve solar energy conversion efficiency, as discussed by Boschloo et al in their article on DSSCs. Perovskite solar cells have advanced rapidly in recent years, including new ideas on 2D and 3D hybrid halide perovskites, as described by Spanopoulos et al 'Next generation' solar cells using multiple exciton generation (MEG) from hot carriers, described in the article by Nozik and Beard, could lead to remarkable improvement in photovoltaic efficiency by using quantization effects in semiconductor nanostructures (quantum dots, wires or wells). These challenges will not be met without simultaneous improvement in nanoscale characterization methods. Terahertz spectroscopy, discussed in the article by Milot et al is one example of a method that is overcoming the difficulties associated with nanoscale materials characterization by avoiding electrical contacts to nanoparticles, allowing characterization during device operation, and enabling characterization of a single nanoparticle. Besides experimental advances, computational science is also meeting the challenges of nanomaterials synthesis. The article by Kohlstedt and Schatz discusses the computational frameworks being used to predict structure-property relationships in materials and devices, including machine learning methods, with an emphasis on organic photovoltaics. The contribution by Megarity and Armstrong presents the 'electrochemical leaf' for improvements in electrochemistry and beyond. In addition, biohybrid approaches can take advantage of efficient and specific enzyme catalysts. These articles present the nanoscience and technology at the forefront of renewable energy development that will have significant benefits to society.

6.
Nat Mater ; 17(3): 226-230, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29335610

RESUMEN

As a generic property, all substances transfer heat through microscopic collisions of constituent particles 1 . A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.

7.
Nano Lett ; 18(2): 827-831, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29381866

RESUMEN

Metal halide perovskites are promising solar energy materials, but their mechanism of action remains poorly understood. It has been conjectured that energetically stabilized states such as those corresponding to polarons, quasiparticles in which the carriers are dressed with phonons, are responsible for their remarkable photophysical properties. Yet, no direct evidence of polarons or other low-energy states have been reported despite extensive efforts. Such states should manifest as below bandgap features in transient absorption and photoluminescence measurements. Here, we use single-particle transient absorption microscopy on MAPbI3 (MA = methylammonium) to unambiguously identify spectrally narrow sub-bandgap states directly; we demonstrate that such signals are completely averaged away in ensemble measurements. Carrier temperature-dependent studies suggest that hot carriers are directed toward transient low-energy states which are immune from permanent defects and traps, thereby giving rise to low carrier recombination rates and ultimately high power conversion efficiency in devices. The utilization of short-lived sub-bandgap states may be a key design principle that propels widespread use of highly heterogeneous materials in optoelectronic applications.

8.
Nature ; 456(7224): 930-2, 2008 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19092931

RESUMEN

A new family of superconductors containing layers of iron arsenide has attracted considerable interest because of their high transition temperatures (T(c)), some of which are >50 K, and because of similarities with the high-T(c) copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase has been suppressed by chemical doping. A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation, localized in both energy and wavevector, within the superconducting phase. This resonance, which has also been observed in several heavy-fermion superconductors, is predicted to occur when the sign of the superconducting energy gap takes opposite values on different parts of the Fermi surface, an unusual gap symmetry which implies that the electron pairing interaction is repulsive at short range. Angle-resolved photoelectron spectroscopy shows no evidence of gap anisotropy in the iron arsenides, but such measurements are insensitive to the phase of the gap on separate parts of the Fermi surface. Here we report inelastic neutron scattering observations of a magnetic resonance below T(c) in Ba(0.6)K(0.4)Fe(2)As(2), a phase-sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors.

9.
Opt Lett ; 38(8): 1316-8, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23595470

RESUMEN

We report on broadband nonlinear optical (NLO) responses from a phase-change chalcogenide compound K(4)GeP(4)Se(12). Its glassy phase exhibits unusual second-harmonic generation (SHG) due to the preservation of local crystallographic order. The SHG efficiency of the glassy form can be boosted by more than 2 orders of magnitude by simple heat treatment. Strong SHG and third-harmonic generation from both glassy and crystalline compounds were characterized over a wide wavelength range of 1.2-4.0 µm. Our results imply that K(4)GeP(4)Se(12) can be utilized for various NLO applications in the mid-infrared spectrum.

10.
Nano Lett ; 12(11): 5979-84, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23072307

RESUMEN

The morphology of crystalline precipitates in a solid-state matrix is governed by complex but tractable energetic considerations driven largely by volume strain energy minimization and anisotropy of interfacial energies. Spherical precipitate morphologies are favored by isotropic systems, while anisotropic interfacial energies give energetic preference to certain crystallographically oriented interfaces, resulting in a faceted precipitate morphology. In conventional solid-solution precipitation, a precipitate's morphological evolution is mediated by surface anchoring of capping molecules, which dramatically alter the surface energy in an anisotropic manner, thereby providing exquisite morphology control during crystal growth. Herein, we present experimental evidence and theoretical validation for the role of a ternary element (Na) in controlling the morphology of nanoscale PbS crystals nucleating in a PbTe matrix, an important bulk thermoelectric system. The PbS nanostructures formed by phase separation from a PbI(2)-doped or undoped PbTe matrix have irregular morphologies. However, replacing the iodine dopant with Na (1-2 mol %) alters dramatically the morphology of the PbS precipitates. Segregation of Na at PbTe/PbS interfaces result in cuboidal and truncated cuboidal morphologies for PbS. Using analytical scanning/transmission electron microscopy and atom-probe tomography, we demonstrate unambiguously that Na partitions to the precipitates and segregates at the matrix/precipitate interfaces, inducing morphological anisotropy of PbS precipitates. First-principles and semiclassical calculations reveal that Na as a solute in PbTe has a higher energy than in PbS and that Na segregation at a (100) PbTe/PbS interface decreases the total energy of matrix/precipitate system, resulting in faceting of PbS precipitates. These results provide an impetus for a new strategy for controlling morphological evolution in matrix/precipitate systems, mediated by solute partitioning of ternary additions.

11.
J Am Chem Soc ; 133(23): 8786-9, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21557606

RESUMEN

The Pb- and Sb- dual nanostructured PbTe system exhibits anomalous electronic transport behavior wherein the carrier mobility first increases and then decreases with increase in temperature. By combining in situ transmission electron microscopy observations and theoretical calculations based on energy filtering of charge carriers, we propose a plausible mechanism of charge transport based on interphase potential that is mediated by interdiffusion between coexisting Pb and Sb precipitates. These findings promise new strategies to enhance thermoelectric figure of merit via dual and multinanostructuring of miscible precipitates.

12.
Phys Rev Lett ; 107(17): 177003, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22107566

RESUMEN

We report inelastic neutron scattering measurements of the resonant spin excitations in Ba(1-x)K(x)Fe(2)As(2) over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s(±)-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.

13.
J Phys Chem Lett ; 12(38): 9301-9307, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34543034

RESUMEN

Excitons in Bridgman grown halide perovskite CsPbBr3 single crystals were examined using photoluminescence (PL) spectroscopy to determine the nature of the electronic states. The photoluminescence intensity was strongly temperature-dependent and depended upon the specific exciton band. At low temperatures intrinsic disorder and its related shallow below bandgap tail states determine the emission properties. Photoluminescence at low temperature revealed the presence of several strong bands at the band edge that is attributed to free or trapped/bound excitons. This PL emission results from strong electron-phonon coupling with an average phonon energy Eph of 6.5 and 27.4 meV for the emissions, comparable to that observed in other perovskites. The Huang-Rhys parameter S was calculated to be 3.81 and 1.51, indicating strong electron-phonon coupling. The interactions between electrons and phonons produce small polarons that tend to bind charge carriers and result in trapped/bound excitons. The transient photoluminescence response of each specific band was studied, and the results indicated a multiphonon recombination process. Average PL lifetimes of ∼17 ns for free excitons and ∼38 ns for trapped/bound excitons were determined. The observed edge states could be associated with native defects such as vacancies and interstitials, as well as twinning due to the cubic-to-tetragonal phase transition in CsPbBr3. Elimination of the trapping sites for binding excitons could lead to improved charge transport mobilities, carrier lifetimes, and detector properties in this system.

14.
Science ; 258(5089): 1769-72, 1992 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-17831660

RESUMEN

Polychalcogenide compounds with open polymeric frameworks are rare, and they represent a class of compounds in which microporosity might be achieved. Microporous frameworks that are not oxide-based are now attracting interest because of the combination of catalytic and electronic properties they may simultaneously possess. Three new compounds that may be forerunners to such materials have been discovered and are reported here. The reaction of gallium (Ga), indium (In), and thallium (TI) metal with (Ph(4)P)(2)Se(5) (Ph, phenyl) and an excess of elemental selenium (Se) in a sealed, evacuated Pyrex tube at 200 degrees C yielded small red crystals of (Ph(4)P)[Ga(Se(6))(2)] (I), (Ph(4)P)[In(Se(6))(2)] (II), and (Ph(4)P)[TI(Se(6))(2)] (III), respectively. The [M(Se(6))(2)](-) (M = Ga, In, TI) ions form a two-dimensional, open framework filled with Ph(4)P(+) ions. The [M(Se(6))(2)](n)(n-) structure consists of tetrahedral M(3+) centers and bridging Se(6)(2-) ligands, leading to an extended structure in two dimensions. These layers stack perfectly one on top of the other giving rise to one-dimensional channels running down the c axis that are filled with Ph(4)P(+) cations. These cations are situated in the layers, as opposed to between the layers, and the whole structure can be viewed as a template. Compound II shows remarkable thermal stability and melts congruently at 242 degrees C. Upon cooling to room temperature it gives a glassy phase that recrystallizes upon subsequent heating to 160 degrees C.

15.
Nat Commun ; 9(1): 2254, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884900

RESUMEN

Ruddlesden-Popper halide perovskites are 2D solution-processed quantum wells with a general formula A2A'n-1M n X3n+1, where optoelectronic properties can be tuned by varying the perovskite layer thickness (n-value), and have recently emerged as efficient semiconductors with technologically relevant stability. However, fundamental questions concerning the nature of optical resonances (excitons or free carriers) and the exciton reduced mass, and their scaling with quantum well thickness, which are critical for designing efficient optoelectronic devices, remain unresolved. Here, using optical spectroscopy and 60-Tesla magneto-absorption supported by modeling, we unambiguously demonstrate that the optical resonances arise from tightly bound excitons with both exciton reduced masses and binding energies decreasing, respectively, from 0.221 m0 to 0.186 m0 and from 470 meV to 125 meV with increasing thickness from n equals 1 to 5. Based on this study we propose a general scaling law to determine the binding energy of excitons in perovskite quantum wells of any layer thickness.

16.
Nat Commun ; 8(1): 1840, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170382

RESUMEN

In the PDF version of this article, Eq. 5 is missing all elements after the equals sign. The correct version of Eq. 5 is given below. The HTML version of the paper was correct from the time of publication.[Formula: see text].

17.
Nat Commun ; 8(1): 742, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963449

RESUMEN

Reducing the dimensionality of three-dimensional hybrid metal halide perovskites can improve their optoelectronic properties. Here, we show that the third-order optical nonlinearity, n 2, of hybrid lead iodide perovskites is enhanced in the two-dimensional Ruddlesden-Popper series, (CH3(CH2)3NH3)2(CH3NH3) n-1Pb n I3n+1 (n = 1-4), where the layer number (n) is engineered for bandgap tuning from E g = 1.60 eV (n = ∞; bulk) to 2.40 eV (n = 1). Despite the unfavorable relation, [Formula: see text], strong quantum confinement causes these two-dimensional perovskites to exhibit four times stronger third harmonic generation at mid-infrared when compared with the three-dimensional counterpart, (CH3NH3)PbI3. Surprisingly, however, the impact of dimensional reduction on two-photon absorption, which is the Kramers-Kronig conjugate of n 2, is rather insignificant as demonstrated by broadband two-photon spectroscopy. The concomitant increase of bandgap and optical nonlinearity is truly remarkable in these novel perovskites, where the former increases the laser-induced damage threshold for high-power nonlinear optical applications.Hybrid metal halide perovskites can exhibit improved optoelectronic properties when their dimensionality is reduced. Here, Saouma et al. study the enhancement of third-order nonlinearities in two-dimensional lead iodide perovskites in the Ruddlesden-Popper series.

18.
Science ; 355(6331): 1288-1292, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28280250

RESUMEN

Understanding and controlling charge and energy flow in state-of-the-art semiconductor quantum wells has enabled high-efficiency optoelectronic devices. Two-dimensional (2D) Ruddlesden-Popper perovskites are solution-processed quantum wells wherein the band gap can be tuned by varying the perovskite-layer thickness, which modulates the effective electron-hole confinement. We report that, counterintuitive to classical quantum-confined systems where photogenerated electrons and holes are strongly bound by Coulomb interactions or excitons, the photophysics of thin films made of Ruddlesden-Popper perovskites with a thickness exceeding two perovskite-crystal units (>1.3 nanometers) is dominated by lower-energy states associated with the local intrinsic electronic structure of the edges of the perovskite layers. These states provide a direct pathway for dissociating excitons into longer-lived free carriers that substantially improve the performance of optoelectronic devices.

19.
Sci Rep ; 6: 35313, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27731394

RESUMEN

Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb2BiS3][AuTe2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of εso = 0.21 eV. The band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling and the inversion symmetry breaking in the heterostructure system.

20.
Nanoscale ; 7(13): 5737-43, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25743612

RESUMEN

The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (∼6-7 nm in diameter) and has a moderately high surface area (62 m(2) g(-1)) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA