Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Lab ; 69(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649524

RESUMEN

BACKGROUND: Nephrin is a protein in the glomerular podocyte slit diaphragm; therefore, its presence in urine implies damage to podocytes. This study aimed to determine the usefulness of nephrin as a biomarker in maternal urine to predict preeclampsia (PE). METHODS: This prospective study included pregnant women admitted for delivery at Seoul National University Bundang Hospital from March 2019 to May 2020. Patients who had been diagnosed with PE were included, and patients without a history of underlying diseases were recruited for the control group. Pertinent clinical data were collected. Urine samples were obtained, and nephrin signaling was detected through test strips using a lateral flow assay. The point-of-care test results were compared between patients with PE and without (control group), using the exact concentration of nephrin by enzyme-linked immunosorbent assay. RESULTS: Clinical characteristics - maternal age, parity, proportion of twin pregnancies, height, weight, and cesarean delivery rate - were comparable between the PE and control groups. Nephrin signals were classified into four groups. In the PE group, signals 0, 1, 2, and 3 were found in 18.4% (9/49), 44.9% (22/49), 24.5% (12/49), and 12.2% (6/49) of participants, respectively. Results were significantly different in the control group, in which 84.3% (43/51) were found to have signal 0 (p < 0.001). CONCLUSIONS: Nephrin signaling in maternal urine could be a noninvasive and useful test for early detection of severity of PE.


Asunto(s)
Podocitos , Preeclampsia , Humanos , Embarazo , Femenino , Preeclampsia/diagnóstico , Estudios Prospectivos , Proteínas de la Membrana/metabolismo , Podocitos/metabolismo
2.
Sol Phys ; 297(9): 115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36101789

RESUMEN

Type-IV radio bursts have been studied for over 50 years. However, the specifics of the radio emission mechanisms is still an open question. In order to provide more information about the emission mechanisms, we studied a moving Type-IV radio burst with fine structures (spike group) by using the high-resolution capability of the Low-Frequency Array (LOFAR) on August 25, 2014. We present a comparison of Nançay Radioheliograph (NRH) and the first LOFAR imaging data of the Type-IV radio burst. The degree of circular polarization (DCP) is calculated at frequencies in the range 20 - 180 MHz using LOFAR data, and it was found that the value of DCP gradually increased during the event, with values of 20 - 30%. LOFAR interferometric data were combined with white-light observations in order to track the propagation of this Type-IV burst. The kinematics shows a westward motion of the radio sources, slower than the CME leading edge. The dynamic spectrum of LOFAR shows a large number of fine structures with durations of less than 1 s and high brightness temperatures ( T B ), i.e., 10 12 - 10 13 K. The gradual increase of DCP supports gyrosynchrotron emission as the most plausible mechanism for the Type IV. However, coherent emissions such as Electron Cyclotron Maser (ECM) instability may be responsible for small-scale fine structures. Countless fine structures altogether were responsible for such high T B . Supplementary Information: The online version contains supplementary material available at 10.1007/s11207-022-02042-0.

3.
Nano Lett ; 18(3): 1699-1706, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29356548

RESUMEN

Explosives, propellants, and pyrotechnics are energetic materials that can store and quickly release tremendous amounts of chemical energy. Aluminum (Al) is a particularly important fuel in many applications because of its high energy density, which can be released in a highly exothermic oxidation process. The diffusive oxidation mechanism (DOM) and melt-dispersion mechanism (MDM) explain the ways powders of Al nanoparticles (NPs) can burn, but little is known about the possible use of plasmonic resonances in NPs to manipulate photoignition. This is complicated by the inhomogeneous nature of powders and very fast heating and burning rates. Here, we generate Al NPs with well-defined sizes, shapes, and spacings by electron beam lithography and demonstrate that their plasmonic resonances can be exploited to heat and ignite them with a laser. By combining simulations with thermal-emission, electron-, and optical-microscopy studies, we reveal how an improved control over NP ignition can be attained.

4.
Nano Lett ; 17(1): 407-413, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27936784

RESUMEN

Optical metasurfaces are two-dimensional optical elements composed of dense arrays of subwavelength optical antennas and afford on-demand manipulation of the basic properties of light waves. Following the pioneering works on active metasurfaces capable of modulating wave amplitude, there is now a growing interest to dynamically control other fundamental properties of light. Here, we present metasurfaces that facilitate electrical tuning of the reflection phase and polarization properties. To realize these devices, we leverage the properties of actively controlled plasmonic antennas and fundamental insights provided by coupled mode theory. Indium-tin-oxide is embedded into gap-plasmon resonator-antennas as it offers electrically tunable optical properties. By judiciously controlling the resonant properties of the antennas from under- to overcoupling regimes, we experimentally demonstrate tuning of the reflection phase over 180°. This work opens up new design strategies for active metasurfaces for displacement measurements and tunable waveplates.

5.
Nano Lett ; 17(3): 1892-1898, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28165745

RESUMEN

Unique features of graphene have motivated the development of graphene-integrated photonic devices. In particular, the electrical tunability of graphene loss enables high-speed modulation of light and tuning of cavity resonances in graphene-integrated waveguides and cavities. However, efficient control of light emission such as lasing, using graphene, remains a challenge. In this work, we demonstrate on/off switching of single- and double-cavity photonic crystal lasers by electrical gating of a monolayer graphene sheet on top of photonic crystal cavities. The optical loss of graphene was controlled by varying the gate voltage Vg, with the ion gel atop the graphene sheet. First, the fundamental properties of graphene were investigated through the transmittance measurement and numerical simulations. Next, optically pumped lasing was demonstrated for a graphene-integrated single photonic crystal cavity at Vg below -0.6 V, exhibiting a low lasing threshold of ∼480 µW, whereas lasing was not observed at Vg above -0.6 V owing to the intrinsic optical loss of graphene. Changing quality factor of the graphene-integrated photonic crystal cavity enables or disables the lasing operation. Moreover, in the double-cavity photonic crystal lasers with graphene, switching of individual cavities with separate graphene sheets was achieved, and these two lasing actions were controlled independently despite the close distance of ∼2.2 µm between adjacent cavities. We believe that our simple and practical approach for switching in graphene-integrated active photonic devices will pave the way toward designing high-contrast and ultracompact photonic integrated circuits.

6.
Mediators Inflamm ; 2017: 8123281, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28804222

RESUMEN

Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF-ß1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF-ß1. We found that E-cadherin, vimentin, fibronectin, and α-SMA expression was increased in nasal polyps compared to inferior turbinates. TGF-ß1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α-SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF-ß1 on migration of A549 cells and suppressed TGF-ß1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF-ß1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF-ß1 in upper airway chronic inflammatory disease such as CRS.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Genes src/fisiología , Factor de Crecimiento Transformador beta1/farmacología , Células A549 , Movimiento Celular/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Genes src/genética , Humanos , Pólipos Nasales/metabolismo , Técnicas de Cultivo de Órganos , Transducción de Señal/efectos de los fármacos
7.
Int Arch Allergy Immunol ; 171(3-4): 209-216, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28049186

RESUMEN

BACKGROUND: Diesel exhaust particles (DEPs), the major contributors to air pollution, induce inflammatory responses in the nasal epithelium. Overproduction of airway mucins is an important pathogenic finding in inflammatory airway diseases. OBJECTIVE: The aims of the present study were to determine the effect of DEPs on the expression of the mucin gene MUC4 and to investigate the underlying mechanism of DEP-induced MUC4 expression in NCI-H292 cells and primary nasal epithelial cells (PNECs). METHODS: NCI-H292 cells were stimulated for 24 h with DEPs. Messenger RNA (mRNA) and protein expression of MUC4 was determined by real-time reverse transcription (RT) polymerase chain reaction (PCR) and Western blotting. NCI-H292 cells were exposed to 3 mitogen-activated protein kinase inhibitors (U0126, SB203580, and SP600125) and a CREB (cAMP response element-binding protein) inhibitor prior to stimulation with DEPs, and MUC4 expression was examined by RT-PCR and Western blotting. PNECs were pretreated with a p38 inhibitor and CREB inhibitor prior to stimulation with DEPs, and MUC4 expression was then determined by RT-PCR and/or Western blotting. RESULTS: DEPs significantly increased the expression of MUC4 mRNA and protein. MUC4 mRNA and protein expression was inhibited by pretreatment with p38 and CREB inhibitors in NCI-H292 stimulated with DEPs. p38 and CREB inhibitors also blocked the expression of MUC4 mRNA and protein in DEP-stimulated PNECs. CONCLUSIONS: We demonstrated that DEPs stimulated the expression of MUC4 via the p38/CREB pathway in NCI-H292 cells and PNECs. The results of the present study pave the way for further studies on the role of MUC4 in DEP-induced hypersecretion in airway epithelium.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Mucina 4/genética , Mucosa Nasal/metabolismo , Material Particulado/efectos adversos , Transducción de Señal , Emisiones de Vehículos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Línea Celular , Células Epiteliales , Expresión Génica , Humanos , Mucina 4/metabolismo , Emisiones de Vehículos/toxicidad
8.
Nano Lett ; 15(3): 1759-65, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25668601

RESUMEN

We explore the shape-dependent light scattering properties of silicon (Si) nanoblocks and their physical origin. These high-refractive-index nanostructures are easily fabricated using planar fabrication technologies and support strong, leaky-mode resonances that enable light manipulation beyond the optical diffraction limit. Dark-field microscopy and a numerical modal analysis show that the nanoblocks can be viewed as truncated Si waveguides, and the waveguide dispersion strongly controls the resonant properties. This explains why the lowest-order transverse magnetic (TM01) mode resonance can be widely tuned over the entire visible wavelength range depending on the nanoblock length, whereas the wavelength-scale TM11 mode resonance does not change greatly. For sufficiently short lengths, the TM01 and TM11 modes can be made to spectrally overlap, and a substantial scattering efficiency, which is defined as the ratio of the scattering cross section to the physical cross section of the nanoblock, of ∼9.95, approaching the theoretical lowest-order single-channel scattering limit, is achievable. Control over the subwavelength-scale leaky-mode resonance allows Si nanoblocks to generate vivid structural color, manipulate forward and backward scattering, and act as excellent photonic artificial atoms for metasurfaces.

9.
Nano Lett ; 15(3): 1570-6, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25671369

RESUMEN

We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 µm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

10.
Opt Express ; 23(13): 16740-9, 2015 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-26191686

RESUMEN

Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.

11.
Nano Lett ; 14(3): 1446-52, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24524658

RESUMEN

The implementation of solar fuel generation as a clean, terawatt-scale energy source is critically dependent on the development of high-performance, inexpensive photocatalysts. Many candidate materials, including for example α-Fe2O3 (hematite), suffer from very poor charge transport with minority carrier diffusion lengths that are significantly shorter (nanometer scale) than the absorption depth of light (micrometer scale near the band edge). As a result, most of the photoexcited carriers recombine rather than participate in water-splitting reactions. For this reason, there is a tremendous opportunity for photon management. Plasmon-resonant nanostructures have been employed to effectively enhance light absorption in the near-surface region of photocatalysts, but this approach suffers from intrinsic optical losses in the metal. Here, we circumvent this issue by driving optical resonances in the active photocatalyst material itself. We illustrate that judiciously nanopatterned photocatalysts support optical Mie and guided resonances capable of substantially enhancing the photocarrier generation rate within 10-20 nm from the water/photocatalyst interface.


Asunto(s)
Compuestos Férricos/química , Luz , Nanoestructuras/química , Procesos Fotoquímicos , Energía Solar , Agua/química , Catálisis
12.
Opt Lett ; 39(21): 6205-8, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25361315

RESUMEN

We report improved minority carrier lifetimes in n-type-doped and tensile-strained germanium by measuring direct bandgap photoluminescence from germanium-on-insulator substrates with various levels of defect density. We first describe a method to fabricate a high-quality germanium-on-insulator substrate by employing direct wafer bonding and chemical-mechanical polishing. Raman spectroscopy measurement was performed to assess the purity of the transferred layer on an insulator. Using time-resolved photoluminescence decay measurement, we observe that minority carrier lifetimes can be improved by over a factor of 3 as the defective top interface of our material stack is removed. Our high-quality germanium-on-insulator should be an ideal platform for high-performance, germanium-based photonic devices for on-chip optical interconnects.

13.
Nano Lett ; 13(7): 3118-23, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23758608

RESUMEN

Semiconductor heterostructures play a vital role in photonics and electronics. They are typically realized by growing layers of different materials, complicating fabrication and limiting the number of unique heterojunctions on a wafer. In this Letter, we present single-material nanowires which behave exactly like traditional heterostructures. These pseudoheterostructures have electronic band profiles that are custom-designed at the nanoscale by strain engineering. Since the band profile depends only on the nanowire geometry with this approach, arbitrary band profiles can be individually tailored at the nanoscale using existing nanolithography. We report the first experimental observations of spatially confined, greatly enhanced (>200×), and wavelength-shifted (>500 nm) emission from strain-induced potential wells that facilitate effective carrier collection at room temperature. This work represents a fundamentally new paradigm for creating nanoscale devices with full heterostructure behavior in photonics and electronics.

14.
J Food Sci ; 89(1): 701-709, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38051020

RESUMEN

Although systemic exposure to peptides, such as Gly-Pro-Hyp, Pro-Hyp, and Gly-Pro, has been reported following administration of collagen hydrolysates from fish scale and porcine skin in vivo, the individual peptide pharmacokinetics remain unknown. We administered the three peptides individually to rats via the intravenous (5 mg/kg) and intragastric (100 mg/kg) routes and then monitored systemic exposure and urinary excretion. The peptides in biological samples were analyzed via liquid chromatography/tandem mass spectrometry. Gly-Pro-Hyp tended to exhibit higher first-pass metabolism than Pro-Hyp; the absolute oral bioavailabilities of Gly-Pro-Hyp and Pro-Hyp were 4.4% and 19.3%, respectively. Gly-Pro levels were very low in the systemic circulation. Pro-Hyp biotransformed from Gly-Pro-Hyp behaved similarly to Pro-Hyp alone when administered orally. Flip-flop kinetics (elimination rate ≫ absorption rate) were evident, probably reflecting transporter-mediated slow absorption. A double-peak phenomenon was observed for Gly-Pro-Hyp and Pro-Hyp when administered orally, and 5.9% ± 2.6% and 1.9% ± 0.3% of each dose were excreted in urine after intravenous administration, respectively. Urinary recovery of Gly-Pro was limited to 0.4% ± 0.5% of the intravenous dose. This work represents the first individual pharmacokinetics of Gly-Pro-Hyp, Pro-Hyp, and Gly-Pro in vivo.


Asunto(s)
Colágeno , Dipéptidos , Oligopéptidos , Ratas , Animales , Dipéptidos/metabolismo , Colágeno/química , Péptidos
15.
Pharmaceutics ; 16(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38931935

RESUMEN

EGFRvIII is expressed only in tumor cells and strongly in glioblastoma and is considered a promising target in cancer diagnosis and therapy. Aptamers are synthetic single-stranded oligonucleotides that bind to biochemical target molecules with high binding affinity and specificity. This study examined the potential of the 68Ga-NOTA-EGFRvIII aptamer as a nuclear imaging probe for visualizing EGFRvIII-expressing glioblastoma by positron emission tomography (PET). EGFRvIII aptamer was selected using the SELEX technology, and flow cytometry and fluorescence microscopy verified the high binding affinity to EGFRvIII positive U87MG vIII 4.12 glioma cells but not to EGFRvIII negative U87MG cells. The EGFRvIII aptamer was conjugated with a chelator (1,4,7-triazanonane-1,4,7-triyl)triacetic acid (NOTA) for 68Ga-labeling. The 68Ga-NOTA-EGFRvIII aptamer was prepared using the preconcentration-based labeling method with a high radiolabeling yield at room temperature. Ex vivo biodistribution analyses confirmed the significantly higher tumor uptake of the 68Ga-NOTA-EGFRvIII aptamer in EGFRvIII-expressing xenograft tumors than that in EGFRvIII negative tumors, confirming the specific tumor uptake of the 68Ga-NOTA-EGFRvIII aptamer in vivo. PET imaging studies revealed a high retention rate of the 68Ga-NOTA-EGFRvIII aptamer in U87MG vIII 4.12 tumors but only low uptake levels in U87-MG tumors, suggesting that the 68Ga-NOTA-EGFRvIII aptamer may be used as a PET imaging agent for EGFRvIII-expressing glioblastoma.

16.
Opt Express ; 21(22): 26387-97, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24216861

RESUMEN

Accumulating electrons in transparent conductive oxides such as indium tin oxide (ITO) can induce an "epsilon-near-zero" (ENZ) in the spectral region near the important telecommunications wavelength of λ = 1.55 µm. Here we theoretically demonstrate highly effective optical electro-absorptive modulation in a silicon waveguide overcoated with ITO. This modulator leverages the combination of a local electric field enhancement and increased absorption in the ITO when this material is locally brought into an ENZ state via electrical gating. This leads to large changes in modal absorption upon gating. We find that a 3 dB modulation depth can be achieved in a non-resonant structure with a length under 30 µm for the fundamental waveguide modes of either linear polarization, with absorption contrast values as high as 37. We also show a potential for 100 fJ/bit modulation, with a sacrifice in performance.

17.
J Pharm Biomed Anal ; 219: 114949, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35863168

RESUMEN

Although ICG-001, chemically synthesised from a bicyclic ß-turn peptidomimetic template, represents various pharmacological activities, no validated determination methods in biological samples have been reported. This study was designed to establish a quantitative determination method for ICG-001 in rat plasma using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) to validate the analytical method, including stability, and to characterise its pharmacokinetic behaviour in rats. After simple protein precipitation with acetonitrile, ICG-001 was eluted on a reversed-phase column using a mobile phase of water and acetonitrile (3:7 v/v, including 0.1% formic acid). The protonated precursor ion [M+H]+ and the major fragment ion were confirmed at m/z 549.2 and 141.4, respectively, for ICG-001. ICG-001 was stable under bench and storage conditions. The analytical method met the criteria for Food and Drug Administration-validated bioanalytical methods, and was successfully applied to a pharmacokinetic study for the first time following subcutaneous and intravenous administration.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Espectrometría de Masas en Tándem , Acetonitrilos , Animales , Cromatografía Líquida de Alta Presión/métodos , Preparaciones Farmacéuticas , Pirimidinonas , Ratas , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
18.
Food Sci Biotechnol ; 31(10): 1309-1313, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35992318

RESUMEN

Although xanthorrhizol, a sesquiterpenoid oil obtained from the rhizome of Curcuma xanthorrhiza Roxb., known as Java turmeric, has many pharmacological effects, its pharmacokinetics remain unclear. Therefore, we investigated the pharmacokinetics of xanthorrhizol in mice and rats. Xanthorrhizol was administered intravenously and orally to mice, while xanthorrhizol and a Java turmeric supercritical extract were administered orally to rats. The terminal half-life (t1/2), clearance, and absolute bioavailability (BA) of xanthorrhizol in mice were almost 8 h, 6.5 L/h/kg, and 10.2%, respectively. In comparison, the clearance of xanthorrhizol was 3-fold higher in rats than mice. The absolute BAs of xanthorrhizol in rats were 12.9% and 13.4% after oral administration of xanthorrhizol and a supercritical extract, respectively. Our results regarding the pharmacokinetics of xanthorrhizol could guide the conversion of intravenous and oral doses, and help identify the optimal maintenance doses of xanthorrhizol and the extract for desirable pharmacodynamic effects.

19.
Opt Express ; 19(15): 13892-8, 2011 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-21934750

RESUMEN

A low-loss plasmonic cavity is proposed comprising of channel waveguides of different widths. Numerical simulations show that surface plasmons are strongly confined by a mode-gap mechanism in the cavity that has a mode volume of 0.0040 (λ/n)3 and a room temperature quality (Q) factor of 125. The introduction of low-index material can enhance the room temperature Q factor by 2.5 times to 350, while maintaining the mode confinement of 0.040 (λ/n)3- well below the wavelength-scale in free space. The suppression of losses from radiation and metallic absorption in the cavity would allow room temperature plasmonic laser operation, and constitutes significant progress towards practical coherent light sources for such lasers.

20.
Opt Lett ; 36(11): 2011-3, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21633432

RESUMEN

We propose an ultrasmall plasmonic cavity consisting of a high-index/low-index dielectric nanorod covered with silver. Full three-dimensional subwavelength confinement of the surface-plasmon polaritons was achieved at the high-index dielectric-silver interface without propagating to the low-index dielectric-silver interface. The numerical simulations showed that the plasmonic mode excited in this cavity has a deep subwavelength mode volume of 0.0038(λ/2n)(3) and a quality factor of 1500 at 40 K, and consequently a large Purcell factor of ∼2×10(5). Therefore, this plasmonic cavity is expected to be useful for the demonstration of high-efficiency single photon sources or low-threshold lasers in an ultracompact nanophotonic circuit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA