Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lab Chip ; 23(13): 2990-3001, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37159235

RESUMEN

Microphysiological system or organ-on-a-chip technologies can replicate the key structure and function of 3D human tissues with higher reproducibility than less controllable 3D cell aggregate models, providing great potential to become advanced drug toxicity and efficacy test platforms alternative to animal models. However, these organ chip models remain to be manufactured and standardized in a highly reproducible manner for reliable drug screening and mechanism of action research. Herein, we present a manufactured form of 'micro-engineered physiological system-tissue barrier chip' called MEPS-TBC for the highly replicable modeling of the human blood-brain barrier (BBB) with a 3D perivascular space. The perivascular region was controlled by tunable aspiration, where human astrocytes reside in 3D, create a network, and communicate with human pericytes facing human vascular endothelial cells, thereby replicating the 3D BBB. The lower channel structure of MEPS-TBC was designed and optimized using a computational simulation to facilitate aspiration while maintaining multicellular construction. Our human BBB model of the 3D perivascular unit and the endothelium perfused by physiological shear stress secured significantly enhanced barrier function exhibiting greater TEER and lower permeability, compared to the only endothelial model, indicating that the cellular interactions between BBB cells significantly contribute to the BBB formation. Importantly, our BBB model showed the cellular barrier function for homeostatic trafficking regulation against inflammatory peripheral immune cells, as well as for molecular transport control across the BBB. We believe our manufactured chip technology will construct reliable and standardized organ-chip models for disease mechanism research and predictive drug screening.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Animales , Humanos , Reproducibilidad de los Resultados , Astrocitos , Transporte Biológico
2.
Biomed Res Int ; 2015: 854359, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25705693

RESUMEN

Stem cell therapy for tissue regeneration has several limitations in the fact that transplanted cells could not survive for a long time. For solving these limitations, many studies have focused on the antioxidants to increase survival rate of neural stem cells (NSCs). Melatonin, an antioxidant synthesized in the pineal gland, plays multiple roles in various physiological mechanisms. Melatonin exerts neuroprotective effects in the central nervous system. To determine the effect of melatonin on NSCs which is in LPS-induced inflammatory stress state, we first investigated nitric oxide (NO) production and cytotoxicity using Griess reagent assays, LDH assay, and neurosphere counting. Also, we investigated the effect of melatonin on NSCs by measuring the mRNA levels of SOX2, TLX, and FGFR-2. In addition, western blot analyses were performed to examine the activation of PI3K/Akt/Nrf2 signaling in LPS-treated NSCs. In the present study, we suggested that melatonin inhibits NO production and protects NSCs against LPS-induced inflammatory stress. In addition, melatonin promoted the expression of SOX2 and activated the PI3K/Akt/Nrf2 signaling under LPS-induced inflammation condition. Based on our results, we conclude that melatonin may be an important factor for the survival and proliferation of NSCs in neuroinflammatory diseases.


Asunto(s)
Inflamación/tratamiento farmacológico , Melatonina/administración & dosificación , Células-Madre Neurales/efectos de los fármacos , Sustancias Protectoras/administración & dosificación , Diferenciación Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Inflamación/inducido químicamente , Inflamación/patología , Lipopolisacáridos/toxicidad , Óxido Nítrico/metabolismo , Cultivo Primario de Células , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptores Citoplasmáticos y Nucleares/biosíntesis , Factores de Transcripción SOXB1/biosíntesis , Transducción de Señal/efectos de los fármacos
3.
Exp Neurobiol ; 23(1): 93-103, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24737944

RESUMEN

Glutathione (GSH) protects cells against oxidative stress by playing an antioxidant role. Protecting brain endothelial cells under oxidative stress is key to treating cerebrovascular diseases and neurodegenerative diseases including Alzheimer's disease and Huntington's disease. In present study, we investigated the protective effect of GSH on brain endothelial cells against hydrogen peroxide (H2O2). We showed that GSH attenuates H2O2-induced production of nitric oxide (NO), reactive oxygen species (ROS), and 8-Oxo-2'-deoxyguanosine (8-OHdG), an oxidized form of deoxiguanosine. GSH also prevents H2O2-induced reduction of tight junction proteins. Finally, GSH increases the level of nuclear factor erythroid 2-related factor 2 (Nrf2) and activates Nrf2-mediated signaling pathways. Thus, GSH is a promising target to protect brain endothelial cells in conditions of brain injury and disease.

4.
Oxid Med Cell Longev ; 2014: 639531, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25126203

RESUMEN

Melatonin has a cellular protective effect in cerebrovascular and neurodegenerative diseases. Protection of brain endothelial cells against hypoxia and oxidative stress is important for treatment of central nervous system (CNS) diseases, since brain endothelial cells constitute the blood brain barrier (BBB). In the present study, we investigated the protective effect of melatonin against oxygen-glucose deprivation, followed by reperfusion- (OGD/R-) induced injury, in bEnd.3 cells. The effect of melatonin was examined by western blot analysis, cell viability assays, measurement of intracellular reactive oxygen species (ROS), and immunocytochemistry (ICC). Our results showed that treatment with melatonin prevents cell death and degradation of tight junction protein in the setting of OGD/R-induced injury. In response to OGD/R injury of bEnd.3 cells, melatonin activates Akt, which promotes cell survival, and attenuates phosphorylation of JNK, which triggers apoptosis. Thus, melatonin protects bEnd.3 cells against OGD/R-induced injury.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Endoteliales/metabolismo , Glucosa/farmacología , Melatonina/farmacología , Animales , Antioxidantes/farmacología , Encéfalo/citología , Línea Celular , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Hipoxia , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Proteínas de Uniones Estrechas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA