Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(6): 3470-3477, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36724407

RESUMEN

The multi-redox mechanism involving multi-sites has great implications to dictate the catalytic water oxidation. Understanding the sequential dynamics of multi-steps in oxygen evolution reaction (OER) cycles on working catalysts is a highly important but challenging issue. Here, using quasi-operando transient absorption (TA) spectroscopy and a typical photosensitization strategy, we succeeded in resolving the sequential oxidation kinetics involving multi-active sites for water oxidation in OER catalytic cycle, with Co3O4 nanoparticles as model catalysts. When OER initiates from fast oxidation of surface Co2+ ions, both surface Co2+ and Co3+ ions are active sites of the multi-cobalt centers for water oxidation. In the sequential kinetics (Co2+ → Co3+ → Co4+), the key characteristic is fast oxidation and slow consumption for all the cobalt species. Due to this characteristic, the Co4+ intermediate distribution plays a determining role in OER activity and results in the slow overall OER kinetics. These insights shed light on the kinetic understanding of water oxidation on heterogeneous catalysts with multi-sites.

2.
J Am Chem Soc ; 141(33): 13033-13037, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31393119

RESUMEN

Triplet energy transfer (TET) from semiconductor nanocrystals (NCs) has recently emerged as a new triplet sensitization paradigm. It remains unclear how trap states pervasive in NCs influence TET or whether trapped excitons can undergo efficient TET. Here we partially address this issue by studying TET from CuInS2 NCs as a model system because their photogenerated excitons are known to be "self-trapped" due to hole localization to intragap Cu states. We found that, thanks to the long lifetime (209 ± 17 ns) of self-trapped excitons, they could be extracted with an efficiency of ∼92.3% by surface-anchored anthracene despite that the TET rate was relatively slow (57.1 ± 1.7 µs-1). We further leveraged this efficient sensitization to achieve triplet-triplet-annihilation photon upconversion (TTA-UC) with a quantum yield of 18.6 ± 0.3%. Thus, this study not only demonstrates trapped excitons can undergo efficient TET as well, but also presents the first TTA-UC system sensitized by nontoxic NCs which is important for the real-life application of this technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA