Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Work Expo Health ; 67(5): 596-608, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36869756

RESUMEN

Particle and gaseous contaminants from industrial scale additive manufacturing (AM) machines were studied in three different work environments. Workplaces utilized powder bed fusion, material extrusion, and binder jetting techniques with metal and polymer powders, polymer filaments, and gypsum powder, respectively. The AM processes were studied from operator's point of view to identify exposure events and possible safety risks. Total number of particle concentrations were measured in the range of 10 nm to 300 nm from operator's breathing zone using portable devices and in the range of 2.5 nm to 10 µm from close vicinity of the AM machines using stationary measurement devices. Gas-phase compounds were measured with photoionization, electrochemical sensors, and an active air sampling method which were eventually followed by laboratory analyses. The duration of the measurements varied from 3 to 5 days during which the manufacturing processes were practically continuous. We identified several work phases in which an operator can potentially be exposed by inhalation (pulmonary exposure) to airborne emissions. A skin exposure was also identified as a potential risk factor based on the observations made on work tasks related to the AM process. The results confirmed that nanosized particles were present in the breathing air of the workspace when the ventilation of the AM machine was inadequate. Metal powders were not measured from the workstation air thanks to the closed system and suitable risk control procedures. Still, handling of metal powders and AM materials that can act as skin irritants such as epoxy resins were found to pose a potential risk for workers. This emphasizes the importance of appropriate control measures for ventilation and material handling that should be addressed in AM operations and environment.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Humanos , Exposición Profesional/análisis , Contaminantes Ocupacionales del Aire/análisis , Polvos/análisis , Lugar de Trabajo , Polímeros/análisis , Impresión Tridimensional , Tamaño de la Partícula
2.
Int J Environ Res Public Health ; 12(4): 3756-73, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25849539

RESUMEN

Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs) in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC) concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm-3. Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both). The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers' exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Contaminación del Aire Interior/análisis , Industria Manufacturera , Exposición Profesional , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , Finlandia , Explotaciones Pesqueras , Materiales Manufacturados/análisis , Tamaño de la Partícula , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA