Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cancer Res ; 81(2): 371-383, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32859606

RESUMEN

Although hormonal therapy (HT) inhibits the growth of hormone receptor-positive (HR+) breast and prostate cancers, HT resistance frequently develops within the complex metastatic microenvironment of the host organ (often the bone), a setting poorly recapitulated in 2D culture systems. To address this limitation, we cultured HR+ breast cancer and prostate cancer spheroids and patient-derived organoids in 3D extracellular matrices (ECM) alone or together with bone marrow stromal cells (BMSC). In 3D monocultures, antiestrogens and antiandrogens induced anoikis by abrogating anchorage-independent growth of HR+ cancer cells but exhibited only modest effects against tumor cells residing in the ECM niche. In contrast, BMSC induced hormone-independent growth of breast cancer and prostate cancer spheroids and restored lumen filling in the presence of HR-targeting agents. Molecular and functional characterization of BMSC-induced hormone independence and HT resistance in anchorage-independent cells revealed distinct context-dependent mechanisms. Cocultures of ZR75-1 and LNCaP with BMSCs exhibited paracrine IL6-induced HT resistance via attenuation of HR protein expression, which was reversed by inhibition of IL6 or JAK signaling. Paracrine IL6/JAK/STAT3-mediated HT resistance was confirmed in patient-derived organoids cocultured with BMSCs. Distinctly, MCF7 and T47D spheroids retained ER protein expression in cocultures but acquired redundant compensatory signals enabling anchorage independence via ERK and PI3K bypass cascades activated in a non-IL6-dependent manner. Collectively, these data characterize the pleiotropic hormone-independent mechanisms underlying acquisition and restoration of anchorage-independent growth in HR+ tumors. Combined analysis of tumor and microenvironmental biomarkers in metastatic biopsies of HT-resistant patients can help refine treatment approaches. SIGNIFICANCE: This study uncovers a previously underappreciated dependency of tumor cells on HR signaling for anchorage-independent growth and highlights how the metastatic microenvironment restores this malignant property of cancer cells during hormone therapy.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores de Estrógenos/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cancer Cell ; 39(2): 240-256.e11, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33417832

RESUMEN

Treatment-persistent residual tumors impede curative cancer therapy. To understand this cancer cell state we generated models of treatment persistence that simulate the residual tumors. We observe that treatment-persistent tumor cells in organoids, xenografts, and cancer patients adopt a distinct and reversible transcriptional program resembling that of embryonic diapause, a dormant stage of suspended development triggered by stress and associated with suppressed Myc activity and overall biosynthesis. In cancer cells, depleting Myc or inhibiting Brd4, a Myc transcriptional co-activator, attenuates drug cytotoxicity through a dormant diapause-like adaptation with reduced apoptotic priming. Conversely, inducible Myc upregulation enhances acute chemotherapeutic activity. Maintaining residual cells in dormancy after chemotherapy by inhibiting Myc activity or interfering with the diapause-like adaptation by inhibiting cyclin-dependent kinase 9 represent potential therapeutic strategies against chemotherapy-persistent tumor cells. Our study demonstrates that cancer co-opts a mechanism similar to diapause with adaptive inactivation of Myc to persist during treatment.


Asunto(s)
Adaptación Fisiológica/genética , Embrión de Mamíferos/fisiología , Proteínas Proto-Oncogénicas c-myc/genética , Adaptación Fisiológica/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Apoptosis/genética , Línea Celular , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/genética , Diapausa/efectos de los fármacos , Diapausa/genética , Embrión de Mamíferos/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , Factores de Transcripción/genética , Transcripción Genética/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA