Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ann Neurol ; 92(5): 871-881, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054261

RESUMEN

OBJECTIVE: High cerebral arterial pulsatility index (PI), white matter lesions (WMLs), enlarged perivascular spaces (PVSs), and lacunar infarcts are common findings in the elderly population, and considered indicators of small vessel disease (SVD). Here, we investigate the potential temporal ordering among these variables, with emphasis on determining whether high PI is an early or delayed manifestation of SVD. METHODS: In a population-based cohort, 4D flow MRI data for cerebral arterial pulsatility was collected for 159 participants at baseline (age 64-68), and for 122 participants at follow-up 5 years later. Structural MRI was used for WML and PVS segmentation, and lacune identification. Linear mixed-effects (LME) models were used to model longitudinal changes testing for pairwise associations, and latent change score (LCS) models to model multiple relationships among variables simultaneously. RESULTS: Longitudinal 5-year increases were found for WML, PVS, and PI. Cerebral arterial PI at baseline did not predict changes in WML or PVS volume. However, WML and PVS volume at baseline predicted 5-year increases in PI. This was shown for PI increases in relation to baseline WML and PVS volumes using LME models (R  ≥  0.24; p < 0.02 and R  ≥  0.23; p < 0.03, respectively) and LCS models ( ß  = 0.28; p = 0.015 and ß  = 0.28; p = 0.009, respectively). Lacunes at baseline were unrelated to PI. INTERPRETATION: In healthy older adults, indicators of SVD are related in a lead-lag fashion, in which the expression of WML and PVS precedes increases in cerebral arterial PI. Hence, we propose that elevated PI is a relatively late manifestation, rather than a risk factor, for cerebral SVD. ANN NEUROL 2022;92:871-881.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Sistema Glinfático , Enfermedades del Sistema Nervioso , Accidente Vascular Cerebral Lacunar , Sustancia Blanca , Humanos , Anciano , Persona de Mediana Edad , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Dilatación , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Sistema Glinfático/diagnóstico por imagen , Accidente Vascular Cerebral Lacunar/patología , Enfermedades del Sistema Nervioso/patología
2.
Cereb Cortex ; 31(7): 3435-3450, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33676372

RESUMEN

The hippocampal longitudinal axis has been linked to dissociated functional networks relevant to episodic memory. However, the organization of axis-dependent networks and their relation to episodic memory in aging remains less explored. Moreover, age-related deterioration of the dopamine (DA) system, affecting memory and functional network properties, might constitute a source of reduced specificity of hippocampal networks in aging. Here, we characterized axis-dependent large-scale hippocampal resting-state networks, their relevance to episodic memory, and links to DA in older individuals (n = 170, 64-68 years). Partial least squares identified 2 dissociated networks differentially connected to the anterior and posterior hippocampus. These overlapped with anterior-temporal/posterior-medial networks in young adults, indicating preserved organization of axis-dependent connectivity in old age. However, axis-specific networks were overall unrelated to memory and hippocampal DA D2 receptor availability (D2DR) measured with [11C]-raclopride positron emission tomography. Further analyses identified a memory-related network modulated by hippocampal D2DR, equally connected to anterior-posterior regions. This network included medial frontal, posterior parietal, and striatal areas. The results add to the current understanding of large-scale hippocampal connectivity in aging, demonstrating axis-dependent connectivity with dissociated anterior and posterior networks, as well as a primary role in episodic memory of connectivity shared by regions along the hippocampalaxis.


Asunto(s)
Envejecimiento/metabolismo , Hipocampo/diagnóstico por imagen , Memoria Episódica , Receptores de Dopamina D2/metabolismo , Anciano , Envejecimiento/fisiología , Antagonistas de Dopamina , Femenino , Neuroimagen Funcional , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Racloprida
3.
Neuroimage ; 245: 118707, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742942

RESUMEN

Dopamine (DA) integrity is suggested as a potential cause of individual differences in working memory (WM) performance among older adults. Still, the principal dopaminergic mechanisms giving rise to WM differences remain unspecified. Here, 61 single-nucleotide polymorphisms, located in or adjacent to various dopamine-related genes, were assessed for their links to WM performance in a sample of 1313 adults aged 61-80 years from the Berlin Aging Study II. Least Absolute Shrinkage and Selection Operator (LASSO) regression was conducted to estimate associations between polymorphisms and WM. Rs40184 in the DA transporter gene, SLC6A3, showed allelic group differences in WM, with T-carriers performing better than C homozygotes (p<0.01). This finding was replicated in an independent sample from the Cognition, Brain, and Aging study (COBRA; baseline: n = 181, ages: 64-68 years; 5-year follow up: n = 129). In COBRA, in vivo DA integrity was measured with 11C-raclopride and positron emission tomography. Notably, WM as well as in vivo DA integrity was higher for rs40184 T-carriers at baseline (p<0.05 for WM and caudate and hippocampal D2-receptor availability) and at the 5-year follow-up (p<0.05 for WM and hippocampal D2 availability). Our findings indicate that individual differences in DA transporter function contribute to differences in WM performance in old age, presumably by regulating DA availability.


Asunto(s)
Envejecimiento/genética , Hipocampo/diagnóstico por imagen , Memoria a Corto Plazo/fisiología , Tomografía de Emisión de Positrones , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Anciano , Anciano de 80 o más Años , Alelos , Femenino , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Racloprida
4.
Cereb Cortex ; 30(3): 989-1000, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31504282

RESUMEN

Insufficient or excessive dopaminergic tone impairs cognitive performance. We examine whether the balance between transmitter availability and dopamine (DA) D2 receptors (D2DRs) is important for successful memory performance in a large sample of adults (n = 175, 64-68 years). The Catechol-O-Methyltransferase polymorphism served as genetic proxy for endogenous prefrontal DA availability, and D2DRs in dorsolateral prefrontal cortex (dlPFC) were measured with [11C]raclopride-PET. Individuals for whom D2DR status matched DA availability showed higher levels of episodic and working-memory performance than individuals with insufficient or excessive DA availability relative to the number of receptors. A similar pattern restricted to episodic memory was observed for D2DRs in caudate. Functional magnetic resonance imaging data acquired during working-memory performance confirmed the importance of a balanced DA system for load-dependent brain activity in dlPFC. Our data suggest that the inverted-U-shaped function relating DA signaling to cognition is modulated by a dynamic association between DA availability and receptor status.


Asunto(s)
Dopamina/fisiología , Memoria Episódica , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Receptores de Dopamina D2/fisiología , Anciano , Mapeo Encefálico , Catecol O-Metiltransferasa/genética , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones
5.
J Neurosci ; 39(3): 537-547, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30478031

RESUMEN

Dopamine (DA) modulates corticostriatal connections. Studies in which imaging of the DA system is integrated with functional imaging during cognitive performance have yielded mixed findings. Some work has shown a link between striatal DA (measured by PET) and fMRI activations, whereas others have failed to observe such a relationship. One possible reason for these discrepant findings is differences in task demands, such that a more demanding task with greater prefrontal activations may yield a stronger association with DA. Moreover, a potential DA-BOLD association may be modulated by task performance. We studied 155 (104 normal-performing and 51 low-performing) healthy older adults (43% females) who underwent fMRI scanning while performing a working memory (WM) n-back task along with DA D2/3 PET assessment using [11C]raclopride. Using multivariate partial-least-squares analysis, we observed a significant pattern revealing positive associations of striatal as well as extrastriatal DA D2/3 receptors to BOLD response in the thalamo-striatal-cortical circuit, which supports WM functioning. Critically, the DA-BOLD association in normal-performing, but not low-performing, individuals was expressed in a load-dependent fashion, with stronger associations during 3-back than 1-/2-back conditions. Moreover, normal-performing adults expressing upregulated BOLD in response to increasing task demands showed a stronger DA-BOLD association during 3-back, whereas low-performing individuals expressed a stronger association during 2-back conditions. This pattern suggests a nonlinear DA-BOLD performance association, with the strongest link at the maximum capacity level. Together, our results suggest that DA may have a stronger impact on functional brain responses during more demanding cognitive tasks.SIGNIFICANCE STATEMENT Dopamine (DA) is a major neuromodulator in the CNS and plays a key role in several cognitive processes via modulating the blood oxygenation level-dependent (BOLD) signal. Some studies have shown a link between DA and BOLD, whereas others have failed to observe such a relationship. A possible reason for the discrepancy is differences in task demands, such that a more demanding task with greater prefrontal activations may yield a stronger association with DA. We examined the relationship of DA to BOLD response during working memory under three load conditions and found that the DA-BOLD association is expressed in a load-dependent fashion. These findings may help explain the disproportionate impairment evident in more effortful cognitive tasks in normal aging and in those suffering dopamine-dependent neurodegenerative diseases (e.g., Parkinson's disease).


Asunto(s)
Memoria a Corto Plazo/fisiología , Receptores de Dopamina D2/fisiología , Receptores de Dopamina D3/fisiología , Anciano , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Antagonistas de Dopamina , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Tomografía de Emisión de Positrones , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Racloprida , Radiofármacos , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/efectos de los fármacos , Receptores de Dopamina D3/metabolismo , Tálamo/fisiología
6.
J Cogn Neurosci ; 31(9): 1422-1429, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31112471

RESUMEN

Episodic memory is a polygenic trait influenced by different molecular mechanisms. We used PET and a candidate gene approach to investigate how individual differences at the molecular level translate into between-person differences in episodic memory performance of elderly persons. Specifically, we examined the interactive effects between hippocampal dopamine D2 receptor (D2DR) availability and candidate genes relevant for hippocampus-related memory functioning. We show that the positive effects of high D2DR availability in the hippocampus on episodic memory are confined to carriers of advantageous genotypes of the brain-derived neurotrophic factor (BDNF, rs6265) and the kidney and brain expressed protein (KIBRA, rs17070145) polymorphisms. By contrast, these polymorphisms did not modulate the positive relationship between caudate D2DR availability and episodic memory.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Memoria Episódica , Receptores de Dopamina D2/metabolismo , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Tomografía de Emisión de Positrones
7.
J Cogn Neurosci ; 31(2): 314-325, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30407135

RESUMEN

The dopamine (DA) system plays an important role in cognition. Accordingly, normal variation in DA genes has been found to predict individual differences in cognitive performance. However, little is known of the impact of genetic differences on the link between empirical indicators of the DA system and cognition in humans. The present work used PET with 11C-raclopride to assess DA D2-receptor binding potential (BP) and links to episodic memory, working memory, and perceptual speed in 179 healthy adults aged 64-68 years. Previously, the T-allele of a DA D2-receptor single-nucleotide polymorphism, C957T, was associated with increased apparent affinity of 11C-raclopride, giving rise to higher BP values despite similar receptor density values between allelic groups. Consequently, we hypothesized that 11C-raclopride BP measures inflated by affinity rather than D2-receptor density in T-allele carriers would not be predictive of DA integrity and therefore prevent finding an association between 11C-raclopride BP and cognitive performance. In accordance with previous findings, we show that 11C-raclopride BP was increased in T-homozygotes. Importantly, 11C-raclopride BP was only associated with cognitive performance in groups with low or average ligand affinity (C-allele carriers of C957T, n = 124), but not in the high-affinity group (T-homozygotes, n = 55). The strongest 11C-raclopride BP-cognition associations and the highest level of performance were found in C-homozygotes. These findings show that genetic differences modulate the link between BP and cognition and thus have important implications for the interpretation of DA assessments with PET and 11C-raclopride in multiple disciplines ranging from cognitive neuroscience to psychiatry and neurology.


Asunto(s)
Encéfalo/metabolismo , Antagonistas de los Receptores de Dopamina D2/metabolismo , Memoria Episódica , Memoria a Corto Plazo/fisiología , Desempeño Psicomotor/fisiología , Racloprida/metabolismo , Receptores de Dopamina D2/metabolismo , Anciano , Encéfalo/diagnóstico por imagen , Femenino , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Tomografía de Emisión de Positrones , Receptores de Dopamina D2/genética
8.
Cereb Cortex ; 28(7): 2525-2539, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29901790

RESUMEN

Individuals differ in how they perceive, remember, and think. There is evidence for the existence of distinct subgroups that differ in cognitive performance within the older population. However, it is less clear how individual differences in cognition in old age are linked to differences in brain-based measures. We used latent-profile analysis on n-back working-memory (WM) performance to identify subgroups in a large sample of older adults (n = 181; age = 64-68 years). Our analysis identified one larger normal subgroup with higher performance (n = 113; 63%), and a second smaller subgroup (n = 55; 31%) with lower performance. The low-performing subgroup showed weaker load-dependent BOLD modulation and lower connectivity within the fronto-parietal network (FPN) as well as between FPN and striatum during n-back, along with lower FPN connectivity at rest. This group also exhibited lower FPN structural integrity, lower frontal dopamine D2 binding potential, inferior performance on offline WM tests, and a trend-level genetic predisposition for lower dopamine-system efficiency. By contrast, this group exhibited relatively intact episodic memory and associated brain measures (i.e., hippocampal volume, structural, and functional connectivity within the default-mode network). Collectively, these data provide converging evidence for the existence of a group of older adults with impaired WM functioning characterized by reduced cortico-striatal coupling and aberrant cortico-cortical integrity within FPN.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/diagnóstico por imagen , Trastornos del Conocimiento/etiología , Trastornos de la Memoria/complicaciones , Memoria a Corto Plazo/fisiología , Anciano , Presión Sanguínea/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Masculino , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/genética , Recuerdo Mental , Persona de Mediana Edad , Mutación/genética , Pruebas Neuropsicológicas , Oxígeno/sangre , Racloprida/farmacocinética , Receptores de Dopamina D2/genética , Percepción del Tiempo/fisiología , Aprendizaje Verbal/fisiología
9.
Cereb Cortex ; 28(11): 3894-3907, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29028935

RESUMEN

Evidence suggests that associations between the neurotransmitter dopamine and cognition are nonmonotonic and open to modulation by various other factors. The functional implications of a given level of dopamine may therefore differ from person to person. By applying latent-profile analysis to a large (n = 181) sample of adults aged 64-68 years, we probabilistically identified 3 subgroups that explain the multivariate associations between dopamine D2/3R availability (probed with 11C-raclopride-PET, in cortical, striatal, and hippocampal regions) and cognitive performance (episodic memory, working memory, and perceptual speed). Generally, greater receptor availability was associated with better cognitive performance. However, we discovered a subgroup of individuals for which high availability, particularly in striatum, was associated with poor performance, especially for working memory. Relative to the rest of the sample, this subgroup also had lower education, higher body-mass index, and lower resting-state connectivity between caudate nucleus and dorsolateral prefrontal cortex. We conclude that a smaller subset of individuals induces a multivariate non-linear association between dopamine D2/3R availability and cognitive performance in this group of older adults, and discuss potential reasons for these differences that await further empirical scrutiny.


Asunto(s)
Encéfalo/metabolismo , Cognición/fisiología , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Anciano , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Femenino , Hipocampo/metabolismo , Humanos , Análisis de Clases Latentes , Masculino , Memoria/fisiología , Persona de Mediana Edad , Análisis Multivariante , Tomografía de Emisión de Positrones , Racloprida
10.
Proc Natl Acad Sci U S A ; 113(28): 7918-23, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27339132

RESUMEN

D1 and D2 dopamine receptors (D1DRs and D2DRs) may contribute differently to various aspects of memory and cognition. The D1DR system has been linked to functions supported by the prefrontal cortex. By contrast, the role of the D2DR system is less clear, although it has been hypothesized that D2DRs make a specific contribution to hippocampus-based cognitive functions. Here we present results from 181 healthy adults between 64 and 68 y of age who underwent comprehensive assessment of episodic memory, working memory, and processing speed, along with MRI and D2DR assessment with [(11)C]raclopride and PET. Caudate D2DR availability was positively associated with episodic memory but not with working memory or speed. Whole-brain analyses further revealed a relation between hippocampal D2DR availability and episodic memory. Hippocampal and caudate D2DR availability were interrelated, and functional MRI-based resting-state functional connectivity between the ventral caudate and medial temporal cortex increased as a function of caudate D2DR availability. Collectively, these findings indicate that D2DRs make a specific contribution to hippocampus-based cognition by influencing striatal and hippocampal regions, and their interactions.


Asunto(s)
Núcleo Caudado/metabolismo , Hipocampo/metabolismo , Memoria Episódica , Receptores de Dopamina D2/metabolismo , Anciano , Cognición , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Neuroimage ; 181: 605-616, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30041059

RESUMEN

Between-person differences in cognitive performance in older age are associated with variations in physical activity. The neurotransmitter dopamine (DA) contributes to cognitive performance, and the DA system deteriorates with advancing age. Animal data and a patient study suggest that physical activity modulates DA receptor availability, but data from healthy humans are lacking. In a cross-sectional study with 178 adults aged 64-68 years, we investigated links among self-reported physical activity, D2/D3 DA receptor (D2/3DR) availability, and cognitive performance. D2/3DR availability was measured with [11C]raclopride positron emission tomography at rest. We used structural equation modeling to obtain latent factors for processing speed, episodic memory, working memory, physical activity, and D2/3DR availability in caudate, putamen, and hippocampus. Physical activity intensity was positively associated with D2/3DR availability in caudate, but not putamen and hippocampus. Frequency of physical activity was not related to D2/3DR availability. Physical activity intensity was positively related to episodic memory and working memory. D2/3DR availability in caudate and hippocampus was positively related to episodic memory. Taken together, our results suggest that striatal DA availability might be a neurochemical correlate of episodic memory that is also associated with physical activity.


Asunto(s)
Envejecimiento/fisiología , Núcleo Caudado/metabolismo , Antagonistas de Dopamina/farmacocinética , Ejercicio Físico/fisiología , Hipocampo/metabolismo , Memoria Episódica , Memoria a Corto Plazo/fisiología , Tomografía de Emisión de Positrones/métodos , Receptores de Dopamina D2/metabolismo , Anciano , Envejecimiento/metabolismo , Núcleo Caudado/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Putamen/diagnóstico por imagen , Putamen/metabolismo , Racloprida/farmacocinética , Receptores de Dopamina D3/metabolismo
13.
PLoS Genet ; 11(12): e1005710, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26681446

RESUMEN

Degeneration of nigrostriatal dopaminergic system is the principal lesion in Parkinson's disease. Because glial cell line-derived neurotrophic factor (GDNF) promotes survival of dopamine neurons in vitro and in vivo, intracranial delivery of GDNF has been attempted for Parkinson's disease treatment but with variable success. For improving GDNF-based therapies, knowledge on physiological role of endogenous GDNF at the sites of its expression is important. However, due to limitations of existing genetic model systems, such knowledge is scarce. Here, we report that prevention of transcription of Gdnf 3'UTR in Gdnf endogenous locus yields GDNF hypermorphic mice with increased, but spatially unchanged GDNF expression, enabling analysis of postnatal GDNF function. We found that increased level of GDNF in the central nervous system increases the number of adult dopamine neurons in the substantia nigra pars compacta and the number of dopaminergic terminals in the dorsal striatum. At the functional level, GDNF levels increased striatal tissue dopamine levels and augmented striatal dopamine release and re-uptake. In a proteasome inhibitor lactacystin-induced model of Parkinson's disease GDNF hypermorphic mice were protected from the reduction in striatal dopamine and failure of dopaminergic system function. Importantly, adverse phenotypic effects associated with spatially unregulated GDNF applications were not observed. Enhanced GDNF levels up-regulated striatal dopamine transporter activity by at least five fold resulting in enhanced susceptibility to 6-OHDA, a toxin transported into dopamine neurons by DAT. Further, we report how GDNF levels regulate kidney development and identify microRNAs miR-9, miR-96, miR-133, and miR-146a as negative regulators of GDNF expression via interaction with Gdnf 3'UTR in vitro. Our results reveal the role of GDNF in nigrostriatal dopamine system postnatal development and adult function, and highlight the importance of correct spatial expression of GDNF. Furthermore, our results suggest that 3'UTR targeting may constitute a useful tool in analyzing gene function.


Asunto(s)
Dopamina/genética , Neuronas Dopaminérgicas/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Enfermedad de Parkinson Secundaria/genética , Sustancia Negra/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/toxicidad , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/patología , Regulación del Desarrollo de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial/biosíntesis , Humanos , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Ratones , Neostriado/metabolismo , Neostriado/patología , Fármacos Neuroprotectores/metabolismo , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/patología , Sustancia Negra/patología
14.
J Cereb Blood Flow Metab ; 44(3): 434-445, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37882727

RESUMEN

Whole-brain mapping of drug effects are needed to understand the neural underpinnings of drug-related behaviors. Amphetamine administration is associated with robust increases in striatal dopamine (DA) release. Dopaminergic terminals are, however, present across several associative brain regions, which may contribute to behavioral effects of amphetamine. Yet the assessment of DA release has been restricted to a few brain regions of interest. The present work employed positron emission tomography (PET) with [11C]raclopride to investigate regional and temporal characteristics of amphetamine-induced DA release across twenty sessions in adult female Sprague Dawley rats. Amphetamine was injected intravenously (2 mg/kg) to cause displacement of [11C]raclopride binding from DA D2-like receptors, assessed using temporally sensitive pharmacokinetic PET model (lp-ntPET). We show amphetamine-induced [11C]raclopride displacement in the basal ganglia, and no changes following saline injections. Peak occupancy was highest in nucleus accumbens, followed by caudate-putamen and globus pallidus. Importantly, significant amphetamine-induced displacement was also observed in several extrastriatal regions, and specifically in thalamus, insula, orbitofrontal cortex, and secondary somatosensory area. For these, peak occupancy occurred later and was lower as compared to the striatum. Collectively, these findings demonstrate distinct amphetamine-induced DA responses across the brain, and that [11C]raclopride-PET can be employed to detect such spatiotemporal differences.


Asunto(s)
Anfetamina , Dopamina , Femenino , Ratas , Animales , Anfetamina/farmacología , Anfetamina/metabolismo , Racloprida/farmacocinética , Dopamina/metabolismo , Ratas Sprague-Dawley , Tomografía de Emisión de Positrones/métodos , Encéfalo/metabolismo , Cuerpo Estriado/metabolismo
15.
Cortex ; 176: 53-61, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749085

RESUMEN

Losses in dopamine (DA) functioning may contribute to aging-related decline in cognition. Hippocampal DA is necessary for successful episodic memory formation. Previously, we reported that higher DA D2 receptor (D2DR) availability in hippocampus is beneficial for episodic memory only in older carriers of more advantageous genotypes of well-established plasticity-related genetic variations, the brain-derived neurotrophic factor (BDNF, rs6265) and the kidney and brain expressed protein (KIBRA, rs17070145) polymorphisms. Extending our observations to the longitudinal level, the current data show that individuals with one or no beneficial BDNF and KIBRA genotype (n = 80) decline more in episodic memory across five years, without any contribution of losses in hippocampal D2DR availability to memory decline. Although carriers of two beneficial genotypes (n = 39) did not decline overall in episodic memory, losses of hippocampal D2DR availability were predictive of episodic-memory decline among these individuals. Our findings have implications for interventions targeting DA modulation to enhance episodic memory in aging, which may not benefit all older individuals.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Genotipo , Hipocampo , Memoria Episódica , Receptores de Dopamina D2 , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Hipocampo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Femenino , Anciano , Envejecimiento/fisiología , Envejecimiento/genética , Polimorfismo de Nucleótido Simple , Persona de Mediana Edad , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Estudios Longitudinales , Polimorfismo Genético/genética , Pruebas Neuropsicológicas , Anciano de 80 o más Años , Péptidos y Proteínas de Señalización Intracelular
16.
Neurobiol Aging ; 136: 125-132, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359585

RESUMEN

Dopamine decline is suggested to underlie aging-related cognitive decline, but longitudinal examinations of this link are currently missing. We analyzed 5-year longitudinal data for a sample of healthy, older adults (baseline: n = 181, age: 64-68 years; 5-year follow-up: n = 129) who underwent positron emission tomography with 11C-raclopride to assess dopamine D2-like receptor (DRD2) availability, magnetic resonance imaging to evaluate structural brain measures, and cognitive tests. Health, lifestyle, and genetic data were also collected. A data-driven approach (k-means cluster analysis) identified groups that differed maximally in DRD2 decline rates in age-sensitive brain regions. One group (n = 47) had DRD2 decline exclusively in the caudate and no cognitive decline. A second group (n = 72) had more wide-ranged DRD2 decline in putamen and nucleus accumbens and also in extrastriatal regions. The latter group showed significant 5-year working memory decline that correlated with putamen DRD2 decline, along with higher dementia and cardiovascular risk and a faster biological pace of aging. Taken together, for individuals with more extensive DRD2 decline, dopamine decline is associated with memory decline in aging.


Asunto(s)
Envejecimiento , Dopamina , Humanos , Anciano , Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Racloprida , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/etiología
17.
Aging Brain ; 4: 100094, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645244

RESUMEN

Extant research suggest aging-related losses of different dopaminergic markers, including presynaptic dopamine transporters as well as post-synaptic DA receptors. Given the central role of DA in neurocognitive functions, maintenance of a healthy DA system may be a key to mitigate age-related cognitive decline. Mechanisms behind DA losses in aging are however largely uncharted. Past research documented an association between dopaminergic integrity and cerebrovascular health (via white matter lesion volumes). However, it remains unclear whether proximity to lesions affected the spatial patterns of age-related D1DR differences within the striatum, and whether such differences are related to mnemonic function. Here, a large cohort of middle-aged to older healthy participants (age = 40-80 years, n = 119, 50 % women) was assessed for D1-receptor (D1DR) availability with positron emission tomography using [11C]SCH23390, and for white matter lesions using FLAIR-MRI. We found evidence for variations in degree of age-related differences along the ventro-dorsal axis, with more pronounced differences in the dorsal caudate. Further analyses revealed an association between distance to lesions and extent of D1DR losses in the caudate. Furthermore, D1DR differences in dorsal caudate (proximal to lesions) was more strongly associated with memory performance. In conclusion, the present findings suggest that maintenance of cerebrovascular health may be a key factor in promoting successful dopaminergic and memory aging.

18.
Transl Psychiatry ; 13(1): 28, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720847

RESUMEN

Age-related dopamine reductions have been suggested to contribute to maladaptive working memory (WM) function in older ages. One promising intervention approach is to increase physical activity, as this has been associated with plasticity of the striatal dopamine system and WM improvements, however with individual differences in efficacy. The present work focused on the impact of individual differences in white-matter lesion burden upon dopamine D2-like receptor (DRD2) availability and WM changes in response to a 6 months physical activity intervention. While the intervention altered striatal DRD2 availability and WM performance in individuals with no or only mild lesions (p < 0.05), no such effects were found in individuals with moderate-to-severe lesion severity (p > 0.05). Follow-up analyses revealed a similar pattern for processing speed, but not for episodic memory performance. Linear analyses further revealed that lesion volume (ml) at baseline was associated with reduced DRD2 availability (r = -0.41, p < 0.05), and level of DRD2 change (r = 0.40, p < 0.05). Taken together, this study underlines the necessity to consider cerebrovascular health in interventions with neurocognitive targets. Future work should assess whether these findings extend beyond measures of DRD2 availability and WM.


Asunto(s)
Envejecimiento , Ejercicio Físico , Memoria a Corto Plazo , Plasticidad Neuronal , Sustancia Blanca , Humanos , Cognición , Dopamina , Sustancia Blanca/diagnóstico por imagen
19.
Cell Rep ; 42(9): 113107, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37676765

RESUMEN

Age-related alterations in D1-like dopamine receptor (D1DR) have distinct implications for human cognition and behavior during development and aging, but the timing of these periods remains undefined. Enabled by a large sample of in vivo assessments (n = 180, age 20 to 80 years of age, 50% female), we discover that age-related D1DR differences pivot at approximately 40 years of age in several brain regions. Focusing on the most age-sensitive dopamine-rich region, we observe opposing pre- and post-forties interrelations among caudate D1DR, cortico-striatal functional connectivity, and memory. Finally, particularly caudate D1DR differences in midlife and beyond, but not in early adulthood, associate with manifestation of white matter lesions. The present results support a model by which excessive dopamine modulation in early adulthood and insufficient modulation in aging are deleterious to brain function and cognition, thus challenging a prevailing view of monotonic D1DR function across the adult lifespan.


Asunto(s)
Longevidad , Receptores de Dopamina D1 , Adulto , Humanos , Femenino , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino , Receptores de Dopamina D1/metabolismo , Dopamina , Encéfalo/metabolismo , Envejecimiento/fisiología
20.
Neurology ; 98(20): e2013-e2022, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35444051

RESUMEN

BACKGROUND AND OBJECTIVES: Cardiovascular risk factors have a recently established association with cognitive decline and dementia, yet most studies examine this association through cross-sectional data, precluding an understanding of the longitudinal dynamics of such risk. The current study aims to explore how the ongoing trajectory of cardiovascular risk affects subsequent dementia and memory decline risk. We hypothesize that an accelerated, long-term accumulation of cardiovascular risk, as determined by the Framingham Risk Score (FRS), will be more detrimental to cognitive and dementia state outcomes than a stable cardiovascular risk. METHODS: We assessed an initially healthy, community-dwelling sample recruited from the prospective cohort Betula study. Cardiovascular disease risk, as assessed by the FRS, episodic memory performance, and dementia status were measured at each 5-year time point (T) across 20 to 25 years. Analysis was performed with bayesian additive regression tree, a semiparametric machine-learning method, applied herein as a multistate survival analysis method. RESULTS: Of the 1,244 participants, cardiovascular risk increased moderately over time in 60% of sample, with observations of an accelerated increase in 18% of individuals and minimal change in 22% of individuals. An accelerated, as opposed to a stable, cardiovascular risk trajectory predicted an increased risk of developing Alzheimer disease dementia (average risk ratio [RR] 3.3-5.7, 95% CI 2.6-17.5 at T2, 1.9-6.7 at T5) or vascular dementia (average RR 3.3-4.1, 95% CI 1.1-16.6 at T2, 1.5-7.6 at T5) and was associated with an increased risk of memory decline (average RR 1.4-1.2, 95% CI 1-1.9 at T2, 1-1.5 at T5). A stable cardiovascular risk trajectory appeared to partially mitigate Alzheimer disease dementia risk for APOE ε4 carriers. DISCUSSION: The findings of the current study show that the longitudinal, cumulative trajectory of cardiovascular risk is predictive of dementia risk and associated with the emergence of memory decline. As a result, clinical practice may benefit from directing interventions at individuals with accelerating cardiovascular risk.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Cardiovasculares , Disfunción Cognitiva , Demencia , Teorema de Bayes , Enfermedades Cardiovasculares/epidemiología , Disfunción Cognitiva/epidemiología , Estudios Transversales , Demencia/epidemiología , Demencia/psicología , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Trastornos de la Memoria , Estudios Prospectivos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA