Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Small ; : e2400420, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751057

RESUMEN

Global water scarcity is leading to increasingly tense competition across populations. In order to complement the largely fast-depleting fresh water sources and mitigate the challenges generated by brine discharge from desalination, atmospheric water harvesting (AWH) has emerged to support long-term water supply. This work presents a novel alginate-based hybrid material comprised of porous silico-aluminophosphate-34 (SAPO-34) as fast-transport channel medium as well as hydrophilicity and stability enhancer, and graphene-based sheets as light absorber for solar-enabled evaporation, both optimally incorporated in an alginate matrix, resulting in a composite sorbent capable of harvesting water from the atmosphere with a record intake of up to 6.85 gw gs -1. Natural sunlight is solely used to enable desorption achieving increase of the temperature of the developed network up to 60 °C and resulting in release of the sorbed water, with impurities content well below the World Health Organization (WHO) upper limits. After 30 cycles of sorption and desorption, the composite hydrogel displayed unchanged water uptake and stability. This work provides an impactful perspective toward sustainable generation of water from humidity without external energy consumption supporting the emergence of alternative water production solutions.

2.
Langmuir ; 34(37): 11156-11166, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30145895

RESUMEN

Design of novel and more efficient antibacterial agents is a continuous and dynamic process due to the appearance of new pathogenic strains and inherent resistance development to existing antimicrobial treatments. Metallic nanoparticles (NPs) are highly investigated, yet the role of released ions is crucial in the antibacterial activity of the NP-based systems. We developed herein ion-based, metal/graphene hybrid structures comprising surface-bound Ag and Cu mono-ionic and Ag/Cu bi-ionic species on functionalized graphene, without involvement of NPs. The antibacterial performance of the resulting systems was evaluated against Escherichia coli cells using a series of parametrization experiments of varying metal ion types and concentrations and compared with that of the respective NP-based systems. It was found that the bi-ionic Ag/Cu-graphene materials exhibited superior performance compared to that of the mono-ionic analogues owing to the synergistic action of the combination of the two different metal ions on the surface and the enhancing role of the graphene support, whereas all ion-based systems performed superiorly compared to their NP-based counterparts of the same metal type and concentration. In addition, the materials exhibited sustained action, as their activity was maintained after reuse in repeated cycles employing fresh bacteria in each cycle. The systems developed herein may open new prospects toward the development of novel, efficient, and tunable antibacterial agents by properly supporting and configuring metals in ionic form.


Asunto(s)
Antibacterianos/química , Cationes/química , Cobre/química , Grafito/química , Plata/química , Escherichia coli/efectos de los fármacos , Grafito/síntesis química , Porosidad
3.
ACS Appl Mater Interfaces ; 16(20): 26142-26152, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718256

RESUMEN

Water is readily available nearly anywhere as vapor. Thus, atmospheric water harvesting (AWH) technologies are seen as a promising solution to support sustainable water production. This work reports a novel semi-interpenetrating network, which integrates poly(pyrrole) doped with a hygroscopic salt and 2D graphene-based nanosheets optimally assembled within an alginate matrix, capable of harvesting water from the atmosphere with a record intake of up to 7.15 gw/gs. Owing to the incorporated graphene nanosheets, natural sunlight was solely used to enable desorption, achieving an increase of the temperature of the developed network of up to 71 °C within 20 min, resulting in a water yield of 3.36 L/kgS in each cycle with quality well within the World Health Organization standard ranges. Notably, after 30 cycles of sorption and desorption, the composite hydrogel displayed unchanged water uptake and stability. This study demonstrates that atmospheric water vapor as a complementary source of water can be harvested sustainably and effectively at a minimal cost and without external energy input.

4.
Chempluschem ; : e202300785, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436555

RESUMEN

This work presents the synthesis of N-doped nanoporous carbon materials using the Ionic Liquid (IL) 1-butyl-3-methylimidazolium tricyanomethanide [BMIM][TCM] as a fluidic carbon precursor, employing two carbonization pathways: templated precursor and pyrolysis/activation. Operando monitoring of mass loss during pyrolytic and activation treatments provides insights into chemical processes, including IL decomposition, polycondensation reactions and pore formation. Comparatively low mass reduction rates were observed at all stages. Heat treatments indicated stable pore size and increasing volume/surface area over time. The resulting N-doped carbon structures were evaluated as electrocatalysts for the oxygen reduction reaction (ORR) and adsorbents for gases and organic vapors. Materials from the templated precursor pathway exhibited high electrocatalytic performance in ORR, analyzed using Rotating Ring-Disk electrode (RRDE). Enhanced adsorption of m-xylene was attributed to wide micropores, while satisfactory CO2 adsorption efficiency was linked to specific morphological features and a relatively high content of N-sites within the C-networks. This research contributes valuable insights into the synthesis and applications of N-doped nanoporous carbon materials, highlighting their potential in electrocatalysis and adsorption processes.

5.
Langmuir ; 29(36): 11479-88, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23988037

RESUMEN

Silver nanoparticles were grown in self-assembled amphiphilic poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) triblock copolymers in selective solvents. Ternary systems of block copolymer, water, and p-xylene were used, forming a dispersion of water droplets in oil (reverse micellar) as well as binary water/block copolymer solutions. Besides its stabilizing affect, the role of the copolymer as a reducing agent for the metal salt precursors was examined. It was found that block copolymer-enabled reduction, carried out mainly by the PEO blocks, could take place only under particular conditions mostly related to the metal precursor, the block copolymer concentration, and the self-assembled micellar configuration. The effect of the triblock copolymers on growth and stabilization of gold nanoparticles was also examined. The antibacterial effect of the silver nanoparticles was investigated against Escherichia coli cells, and their performance was evaluated through a series of parametrization experiments, including the effect of the metal concentration, stability, activity over time, and dosage, while particular emphasis was given on the role of ions versus nanoparticles on the antibacterial performance.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas del Metal/química , Polietilenos/química , Polipropilenos/química , Plata/química , Plata/farmacología , Escherichia coli/efectos de los fármacos , Tamaño de la Partícula , Solventes/química
6.
J Biomed Mater Res A ; 111(4): 514-526, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36371793

RESUMEN

MXenes belong to a new class of two dimensional (2D) functional nanomaterials, mainly encompassing transition-metal carbides, nitrides and carbonitrides, with unique physical, chemical, electronic and mechanical properties for various emerging applications across different fields. To date, the potentials of MXenes for biomedical application such as drug delivery have not been thoroughly explored due to the lack of information on their biocompatibility, cytotoxicity and biomolecule-surface interaction. In this study, we developed novel drug delivery system from MXene for the controlled release of a model therapeutic protein. First, the structural, chemical and morphological properties of as synthesized MXenes were probed with electron microscopy and X-ray diffraction. Second, the potential cytotoxicity of MXene toward the proliferation and cell morphology of murine macrophages (RAW 264.7) were evaluated with MTT assays and electron microscopy, respectively. Moreover, the drug loading capacities and sustained release capabilities of MXene were assessed in conjunction with machine learning approaches. Our results demonstrated that MXene did not significantly induce cellular toxicity at any concentration below 1 mg/ml which is within the range for effective dose of drug delivery vehicle. Most importantly, MXene was efficiently loaded with FITC-catalase for subsequently achieving controlled release under different pHs. The release profiles of catalase from MXene showed higher initial rate under basic buffer (pH 9) compared to that in physiological (pH 7.4) and acidic buffers (pH 2). Taken together, the results of this study lead to a fundamental advancement toward the use of MXene as a nanocarrier for therapeutic proteins in drug delivery applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Macrófagos , Animales , Ratones , Catalasa , Preparaciones de Acción Retardada
7.
ACS Omega ; 8(24): 21664-21676, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37360493

RESUMEN

Biowaste utilization as a carbon source and its transformation into porous carbons have been of great interest to promote environmental remediation owing to biowaste's cost-effectiveness and useful physicochemical properties. In this work, crude glycerol (CG) residue from waste cooking oil transesterification was employed to fabricate mesoporous crude glycerol-based porous carbons (mCGPCs) using mesoporous silica (KIT-6) as a template. The obtained mCGPCs were characterized and compared to commercial activated carbon (AC) and CMK-8, a carbon material prepared using sucrose. The study aimed to evaluate the potential of mCGPC as a CO2 adsorbent and demonstrated its superior adsorption capacity compared to AC and comparable to CMK-8. The X-ray diffraction (XRD) and Raman results clearly depicted the structure of carbon nature with (002) and (100) planes and defect (D) and graphitic (G) bands, respectively. The specific surface area, pore volume, and pore diameter values confirmed the mesoporosity of mCGPC materials. The transmission electron microscopy (TEM) images also clearly revealed the porous nature with the ordered mesopore structure. The mCGPCs, CMK-8, and AC materials were used as CO2 adsorbents under optimized conditions. The mCGPC adsorption capacity (1.045 mmol/g) is superior to that of AC (0.689 mmol/g) and still comparable to that of CMK-8 (1.8 mmol/g). The thermodynamic analyses of the adsorption phenomena are also carried out. This work demonstrates the successful synthesis of a mesoporous carbon material using a biowaste (CG) and its application as a CO2 adsorbent.

8.
Sci Total Environ ; 859(Pt 1): 160140, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36379328

RESUMEN

Carbon dioxide (CO2) is the top contributor to global warming. On the other, soot particles formed during fuel combustion and released into the atmosphere are harmful and also contribute to global warming. It would therefore be highly advantageous to capture soot and make use of it as a feedstock to synthesize carbon-based materials for applications such as carbon dioxide adsorption. In this work, flame-made diesel soot nanoparticles were used to produce a variety of activated carbons by combined oxidative treatment with hydrogen peroxide (H2O2) and potassium hydroxide (KOH), and their performance towards CO2 adsorption was evaluated. The effect of the chemical activation of soot with H2O2 for different reaction times and with KOH on the physicochemical properties of the activated carbons was investigated and compared to fresh soot. Interestingly, hollow aggregates of carbonaceous nanoparticles of a high interplanar distance, reduced polycyclic aromatic hydrocarbons (PAH) size, shorter PAH stacks, mesoporous structure, and a high content of oxygen functionalities along with other structural defects in PAHs were obtained in the synthesized activated carbons. Among the various analysis techniques employed, Raman spectroscopy indicated that the ID/IG ratio in soot decreased after simultaneous chemical treatment, though it did not indicate any enhancement in the graphitic character since the carbonyl and carboxylic containing PAHs and monovacancies (which cause defects in PAHs) also contribute to the increase in the intensity of the graphitic band. The activated carbons possessed promising CO2 adsorption capacities, adsorption kinetics and CO2/N2 selectivity. For example, one of the activated carbons, following H2O2 treatment for 9 h and a subsequent KOH activation, exhibited a CO2 adsorption capacity of 1.78 mmol/g at 1 bar and 25 °C, representing an increase of 161 % in capacity as compared to fresh soot. Hollow aggregates of carbonaceous nanoparticles consisting of shorter PAHs with a larger number of defects led to enhanced CO2 adsorption rate and CO2/N2 selectivity on activated carbons.


Asunto(s)
Dióxido de Carbono , Hidrocarburos Policíclicos Aromáticos , Dióxido de Carbono/análisis , Hollín , Peróxido de Hidrógeno/análisis , Adsorción , Carbón Orgánico/química , Hidrocarburos Policíclicos Aromáticos/análisis
9.
RSC Adv ; 12(55): 35703-35711, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36545114

RESUMEN

Carbon dioxide foam injection is a promising enhanced oil recovery (EOR) method, being at the same time an efficient carbon storage technology. The strength of CO2 foam under reservoir conditions plays a crucial role in predicting the EOR and sequestration performance, yet, controlling the strength of the foam is challenging due to the complex physics of foams and their sensitivity to operational conditions and reservoir parameters. Data-driven approaches for complex fluids such as foams can be an alternative method to the time-consuming experimental and conventional modeling techniques, which often fail to accurately describe the effect of all important related parameters. In this study, machine learning (ML) models were constructed to predict the oil-free CO2 foam apparent viscosity in the bulk phase and sandstone formations. Based on previous experimental data on various operational and reservoir conditions, predictive models were developed by employing six ML algorithms. Among the applied algorithms, neural network algorithms provided the most precise predictions for bulk and porous media. The established models were then used to compute the critical foam quality under different conditions and determine the maximum apparent foam viscosity, effectively controlling CO2 mobility to co-optimize EOR and CO2 sequestration.

10.
Nanotechnology ; 22(35): 355602, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21817779

RESUMEN

Open-ended, multi-wall carbon nanotubes (CNTs) with magnetic nanoparticles encapsulated within their graphitic walls (magCNTs) were fabricated by a combined action of templated growth and a ferrofluid catalyst/carbon precursor, and tested as drug hosts. The hybrid nanotubes are stable under extreme pH conditions due to particle protection provided by the graphitic shell. The magCNTs are promising for high capacity drug loading given that the magnetic functionalization did not block any of the active sites available for drug attachment, either from the CNT internal void or on the internal and external surfaces. This is in contrast to typical approaches of loading CNTs with particles that proceed through surface attachment or capillary filling of the tube interior. Additionally, the CNTs exhibit enhanced hydrophilic character, as shown by water adsorption measurements, which make them suitable for biological applications. The morphological and structural characteristics of the hybrid CNTs are evaluated in conjunction to their magnetic properties and ability for drug loading (diaminophenothiazine). The fact that the magnetic functionality is provided from 'inside the walls' can allow for multimode functionalization of the graphitic surfaces and makes the magCNTs promising for targeted therapeutic applications.


Asunto(s)
Nanopartículas de Magnetita/química , Nanocápsulas/química , Nanotubos de Carbono/química , Adsorción , Estabilidad de Medicamentos , Hexanos/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas de Magnetita/ultraestructura , Azul de Metileno/química , Microscopía Electrónica de Rastreo , Nanocápsulas/ultraestructura , Nanotubos de Carbono/ultraestructura , Espectrofotometría Infrarroja , Propiedades de Superficie , Termogravimetría , Agua/química , Difracción de Rayos X
11.
RSC Adv ; 11(23): 13743-13750, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35423909

RESUMEN

In the race for viable solutions that could slow down carbon emissions and help in meeting the climate change targets a lot of effort is being made towards the development of suitable CO2 adsorbents with high surface area, tunable pore size and surface functionalities that could enhance selective adsorption. Here, we explored the use of silsesquioxane pillared graphene oxide for CO2 capture; we modified silsesquioxane loading and processing parameters in order to obtain pillared structures with nanopores of the tailored size and surface properties to maximize the CO2 sorption capacity. Powder X-ray diffraction, XPS and FTIR spectroscopies, thermal analysis (DTA/TGA), surface area measurements and CO2 adsorption measurements were employed to characterize the materials and evaluate their performance. Through this optimisation process, materials with good CO2 storage capacities of up to 1.7/1.5 mmol g-1 at 273 K/298 K in atmospheric pressure, were achieved.

12.
Front Chem ; 8: 412, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32671014

RESUMEN

Highly effective antimicrobial agents are needed to control the emergence of new bacterial strains, their increased proliferation capability, and antibacterial resistance that severely impact public health, and several industries including water, food, textiles, and oil and gas. Recently, bimetallic nanoparticles, formed via integration of two different metals, have appeared particularly promising with antibacterial efficiencies surpassing that of monometallic counterparts due to synergistic effects, broad range of physiochemical properties, and diverse mechanisms of action. This work aims to provide a review on developed bimetallic and supported bimetallic systems emphasizing in particular on the relation between synthesis routes, properties, and resulting efficiency. Bimetallic nanostructures on graphene, zeolites, clays, fibers, polymers, as well as non-supported bimetallic nanoparticles are reviewed, their synthesis methods and resulting properties are illustrated, along with their antimicrobial activity and potential against different strains of microbes.

13.
Nanomaterials (Basel) ; 10(11)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158048

RESUMEN

"Bottom-up" additive manufacturing (AM) is the technology whereby a digitally designed structure is built layer-by-layer, i.e., differently than by traditional manufacturing techniques based on subtractive manufacturing. AM, as exemplified by 3D printing, has gained significant importance for scientists, among others, in the fields of catalysis and separation. Undoubtedly, it constitutes an enabling pathway by which new complex, promising and innovative structures can be built. According to recent studies, 3D printing technologies have been utilized in enhancing the heat, mass transfer, adsorption capacity and surface area in CO2 adsorption and separation applications and catalytic reactions. However, intense work is needed in the field to address further challenges in dealing with the materials and metrological features of the structures involved. Although few studies have been performed, the promise is there for future research to decrease carbon emissions and footprint. This review provides an overview on how AM is linked to the chemistry of catalysis and separation with particular emphasis on reforming reactions and carbon adsorption and how efficient it could be in enhancing their performance.

14.
Front Chem ; 8: 568669, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134273

RESUMEN

Aluminophosphate, AlPO4-5, an AFI zeotype framework consisting of one-dimensional parallel micropores, and metal-substituted AlPO4-5 were prepared and studied for CO2 adsorption. Preparation of AlPO4-5 by using different activation methods (calcination and pyrolysis), incorporation of different metals/ions (Fe, Mg, Co, and Si) into the framework using various concentrations, and manipulation of the reaction mixture dilution rate and resulting crystal morphology were examined in relation to the CO2 adsorption performance. Among the various metal-substituted analogs, FeAPO-5 was found to exhibit the highest CO2 capacity at all pressures tested (up to 4 bar). Among the Fe-substituted samples, xFeAPO-5, with x being the Fe/Al2O3 molar ratio in the synthesis mixture (range of 2.5:100-10:100), 5FeAPO-5 exhibited the highest capacity (1.8 mmol/g at 4 bar, 25°C) with an isosteric heat of adsorption of 23 kJ/mol for 0.08-0.36 mmol/g of CO2 loading. This sample also contained the minimum portion of extra-framework or clustered iron and the highest mesoporosity. Low water content in the synthesis gel led to the formation of spherical agglomerates of small 2D-like crystallites that exhibited higher adsorption capacity compared to columnar-like crystals produced by employing more dilute mixtures. CO2 adsorption kinetics was found to follow a pseudo-first-order model. The robust nature of AlPO4-5-based adsorbents, their unique one-dimensional pore configuration, fast kinetics, and low heat of adsorption make them promising for pressure swing adsorption of CO2 at industrial scale.

15.
J Hazard Mater ; 394: 122565, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32272328

RESUMEN

HKUST-1, a Cu-based metalorganic framework (MOF), was synthesized solvothermally, functionalized with polyethyleneimine (PEI), and hybridized with graphene oxide (GO) and functionalized GO for H2S removal. MOF synthesis approach, molecular weight of amines, and the content of GO in the hybrid adsorbents were systematically varied. The adsorbent materials were characterized by XRD, FTIR, SEM, elemental analysis, liquid N2 adsorption-desorption, water vapor and oxygen sorption, and subsequently tested for H2S adsorption in a breakthrough column. The MOF in the composite adsorbents consisting of in-situ grown HKUST-1 on GO that was pre-functionalized with low molecular weight PEI exhibited the highest H2S adsorption uptake at ambient conditions (0.9 mmol S g-1 MOF) in comparison to 0.5 mmol S g-1 MOF for the parent HKUST-1, thus showing an 80 % increase in uptake, while this material also exhibited significantly enhanced sorption kinetics. H2S adsorption at higher temperature (150 °C) was also performed, and at this temperature a HKUST/GO hybrid adsorbent resulted in the highest MOF capacity, i.e. 2.1 mmol S g-1 MOF, which is 27 % higher than that of the parent MOF at the same conditions. Formation of hybrid adsorbents with GO coupled to tunable functionalization of both GO support and the MOF crystallites can contribute in optimizing H2S capture performance of MOFs.

16.
Front Chem ; 8: 534, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719772

RESUMEN

Gas separation and purification using polymeric membranes is a promising technology that constitutes an energy-efficient and eco-friendly process for large scale integration. However, pristine polymeric membranes typically suffer from the trade-off between permeability and selectivity represented by the Robeson's upper bound. Mixed matrix membranes (MMMs) synthesized by the addition of porous nano-fillers into polymer matrices, can enable a simultaneous increase in selectivity and permeability. Among the various porous fillers, metal-organic frameworks (MOFs) are recognized in recent days as a promising filler material for the fabrication of MMMs. In this article, we review representative examples of MMMs prepared by dispersion of MOFs into polymer matrices or by deposition on the surface of polymeric membranes. Addition of MOFs into other continuous phases, such as ionic liquids, are also included. CO2 separation from hydrocarbons, H2, N2, and the like is emphasized. Hybrid fillers based on composites of MOFs with other nanomaterials, e.g., of MOF/GO, MOF/CNTs, and functionalized MOFs, are also presented and discussed. Synergetic effects and the result of interactions between filler/matrix and filler/filler are reviewed, and the impact of filler and matrix types and compositions, filler loading, surface area, porosity, pore sizes, and surface functionalities on tuning permeability are discoursed. Finally, selectivity, thermal, chemical, and mechanical stability of the resulting MMMs are analyzed. The review concludes with a perspective of up-scaling of such systems for CO2 separation, including an overview of the most promising MMM systems.

17.
J Phys Chem Lett ; 10(20): 6339-6344, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31577146

RESUMEN

Highly ordered and highly cooperative water with properties of both solid and liquid states has been observed by means of neutron scattering in hydrophobic one-dimensional channels with van der Waals diameter of 0.78 nm. We have found that in the initial stages of adsorption water molecules occupy niches close to pore walls, followed later by the filling of the central pore area. Intensified by confinement, intermolecular water interactions lead to the formation of well-ordered hydrogen-bonded water chains and to the onset of cooperative vibrations. On the other hand, the same intermolecular interactions lead to two relaxation processes, the faster of which is the spontaneous position exchange between two water molecules placed 3.2-4 Å from each other. Self-diffusion in an axial pore direction is the result of those spontaneous random exchanges and is substantially slower than the self-diffusion in bulk water.

20.
ACS Appl Mater Interfaces ; 8(41): 27498-27510, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27680975

RESUMEN

Increased proliferation of antimicrobial resistance and new strains of bacterial pathogens severely impact current health, environmental, and technological developments, demanding design of novel, highly efficient antibacterial agents. Ag, Cu monometallic and Ag/Cu bimetallic nanoparticles (NPs) were in situ grown on the surface of graphene, which was produced by chemical vapor deposition using ferrocene as precursor and further functionalized to introduce oxygen-containing surface groups. The antibacterial performance of the resulting hybrids was evaluated against Escherichia coli cells and compared through a series of parametrization experiments of varying metal type and concentration. It was found that both Ag- and Cu-based monometallic graphene composites significantly suppress bacterial growth, yet the Ag-based ones exhibit higher activity compared to that of their Cu-based counterparts. Compared with well-dispersed colloidal Ag NPs of the same metal concentration, Ag- and Cu-based graphene hybrids display weaker antibacterial activity. However, the bimetallic Ag/CuNP-graphene hybrids exhibit superior performance compared to that of all other materials tested, i.e., both the monometallic graphene structures as well as the colloidal NPs, achieving complete bacterial growth inhibition at all metal concentrations tested. This striking performance is attributed to the synergistic action of the combination of the two different metals that coexist on the surface as well as the enhancing role of the graphene support.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA