Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731400

RESUMEN

Energy-level alignment is a crucial factor in the performance of thin-film devices, such as organic light-emitting diodes and photovoltaics. One way to adjust these energy levels is through chemical modification of the molecules involved. However, this approach may lead to unintended changes in the optical and/or electrical properties of the compound. An alternative method for energy-level adjustment at the interface is the use of self-assembling monolayers (SAMs). Initially, SAMs with passive spacers were employed, creating a surface dipole moment that altered the work function (WF) of the electrode. However, recent advancements have led to the synthesis of SAM molecules with active spacers. This development necessitates considering not only the modification of the electrode's WF but also the ionization energy (IE) of the molecule itself. To measure both the IE of SAM molecules and their impact on the electrode's WF, a relatively simple method is photo-electric emission spectroscopy. Solar cell performance parameters have a higher correlation coefficient with the ionization energy of SAM molecules with carbazole derivatives as spacers (up to 0.97) than the work function of the modified electrode (up to 0.88). Consequently, SAMs consisting of molecules with active spacers can be viewed as hole transport layers rather than interface layers.

2.
Biofouling ; 38(9): 865-875, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36345787

RESUMEN

The resistance of surfaces to biofouling remains a significant advantage for optical devices working in natural conditions, increasing their lifetime and reducing maintenance costs. This paper reports on the functionalities of transparent CeO2 thin films with thicknesses between 25 and 600 nm deposited by reactive magnetron sputtering on the glass substrate. The CeO2 photocatalytic performance exhibited an efficiency of 30% on imidacloprid degradation under 6 h of UV radiation and increased linearly with the irradiation time, suggesting a complete degradation within 48 h. The films did not alter the growth rate of the green algae Chlorella vulgaris after 72 h short-term exposure. The tested CeO2 films proved to efficiently inhibit with high efficiency the Staphylococcus aureus biofilms and planktonic growth (reducing the counts of bacterial cells by 2 to 8 logs), demonstrating the promising potential of these materials for obtaining antimicrobial and antibiofilm surfaces, with broad applications for the biomedical, ecological and industrial fields.


Asunto(s)
Cerio , Chlorella vulgaris , Biopelículas , Cerio/farmacología , Cerio/química , Staphylococcus aureus
3.
Molecules ; 26(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430043

RESUMEN

Flooding of the cathode flow channel is a major hindrance in achieving maximum performance from Proton Exchange Membrane Fuel Cells (PEMFC) during the scaling up process. Water accumulated between the interface region of Gas Diffusion Layer (GDL) and rib of the cathode flow field can be removed by the use of Porous Sponge Inserts (PSI) on the ribs. In the present work, the experimental investigations are carried out on PEMFC for the various reaction areas, namely 25, 50 and 100 cm2. Stoichiometry value of 2 is maintained for all experiments to avoid variations in power density obtained due to differences in fuel utilization. The experiments include two flow fields, namely Serpentine Flow Field (SFF) and Modified Serpentine with Staggered provisions of 4 mm PSI (4 mm × 2 mm × 2 mm) Flow Field (MSSFF). The peak power densities obtained on MSSFF are 0.420 W/cm2, 0.298 W/cm2 and 0.232 W/cm2 compared to SFF which yields 0.242 W/cm2, 0.213 W/cm2 and 0.171 W/cm2 for reaction areas of 25, 50 and 100 cm2 respectively. Further, the reliability of experimental results is verified for SFF and MSSFF on 25 cm2 PEMFC by using Electrochemical Impedance Spectroscopy (EIS). The use of 4 mm PSI is found to improve the performance of PEMFC through the better water management.


Asunto(s)
Suministros de Energía Eléctrica , Membranas Artificiales , Agua/química , Porosidad
4.
Molecules ; 25(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041230

RESUMEN

In this work, layered hybrid composites formed by tin oxide (SnO) nanoparticles synthesized by hydrolysis and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) have been analyzed. Prior to the composite study, both SnO and PEDOT:PSS counterparts were characterized by diverse techniques, such as X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), photoluminescence (PL), atomic force microscopy (AFM), optical absorption and Hall effect measurements. Special attention was given to the study of the stability of the polymer under laser illumination, as well as the analysis of the SnO to SnO2 oxidation assisted by laser irradiation, for which different laser sources and neutral filters were employed. Synergetic effects were observed in the hybrid composite, as the addition of SnO nanoparticles improves the stability and electrical conductivity of the polymer, while the polymeric matrix in which the nanoparticles are embedded hinders formation of SnO2. Finally, the Si passivation behavior of the hybrid composites was studied.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Nanopartículas/química , Polímeros/química , Poliestirenos/química , Compuestos de Estaño/química , Conductividad Eléctrica , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Transmisión/métodos
5.
Molecules ; 25(14)2020 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-32664654

RESUMEN

We report preferential orientation control in photochromic gadolinium oxyhydride (GdHO) thin films deposited by a two-step process. Gadolinium hydride (GdH2-x) films were grown by reactive magnetron sputtering, followed by oxidation in air. The preferential orientation, grain size, anion concentrations and photochromic response of the films were strongly dependent on the deposition pressure. The GdHO films showed a preferential orientation along the [100] direction and exhibited photochromism when synthesized at deposition pressures of up to 5.8 Pa. The photochromic contrast was larger than 20% when the films were deposited below 2.8 Pa with a 0.22 H2/Ar flow ratio. We argue that the relation of preferential orientation and the post deposition oxidation since oxygen concentration is known to be a key parameter for photochromism in rare-earth oxyhydride thin films. The experimental observations described above were explained by the decrease of the grain size as a result of the increase of the deposition pressure of the sputtering gas, followed by a higher oxygen incorporation.

6.
Molecules ; 24(16)2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31416287

RESUMEN

Electrochemical anodized titanium dioxide (TiO2) nanotubes are of immense significance as electrochemical energy storage devices owing to their fast electron transfer by reducing the diffusion path and paving way to fabricating binder-free and carbon-free electrodes. Besides these advantages, when nitrogen is doped into its lattice, doubles its electrochemical activity due to enhanced charge transfer induced by oxygen vacancy. Herein, we synthesized nitrogen-doped TiO2 (N-TiO2) and studied its electrochemical performances in supercapacitor and as anode for a lithium-ion battery (LIB). Nitrogen doping into TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical performance of N-TiO2 nanotubes was outstanding with a specific capacitance of 835 µF cm-2 at 100 mV s-1 scan rate as a supercapacitor electrode, and it delivered an areal discharge capacity of 975 µA h cm-2 as an anode material for LIB which is far superior to bare TiO2 nanotubes (505 µF cm-2 and 86 µA h cm-2, respectively). This tailor-made nitrogen-doped nanostructured electrode offers great promise as next-generation energy storage electrode material.


Asunto(s)
Capacidad Eléctrica , Suministros de Energía Eléctrica , Electrodos , Iones/química , Litio/química , Nanotubos , Nitrógeno/química , Titanio/química , Técnicas Electroquímicas , Electroquímica , Nanotubos/ultraestructura , Análisis Espectral
7.
Chemosphere ; 346: 140577, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944765

RESUMEN

The lattice distortion and electrocatalytic activity are investigated by the mono-substituent of Mn with different concentrations to generate localized states in the electronic structure of SrTiO3. The sol-gel approach has been employed to fabricate SrTiO3 and SrTi1-xMnxO3 nanostructures (NSs). The structural analysis indicates Mn incorporation into Ti sites of SrTiO3, which shifts the lattice towards a higher diffraction angle with a single-phase cubic structure. The optical absorption spectra exhibit a decrease in band gap from 3.27 to 1.89 eV and reveal the shift in band edge positions towards the visible region. XPS analysis is carried out to confirm the formation of oxygen vacancies and valence band edge position. For SrTi0.88Mn0.12O3, OER and HER have the overpotential of 445 and 157 mV at a current density of 100 and 10 mA cm-2. Hence, the substitution of Mn (x = 0.12) into SrTiO3 lattice results in lattice distortion that enhances the electrochemical performance compared to SrTiO3. The current work manifestly established the optimal Mn composition (x = 0.12) in SrTiO3 lattice as desirable materials with defective valence states for required electrocatalytic redox potential as well as the acceleration of charge transfer kinetics towards water splitting applications.


Asunto(s)
Electrónica , Nanoestructuras , Cinética , Oxígeno , Física
8.
Artículo en Inglés | MEDLINE | ID: mdl-38942001

RESUMEN

Photocatalysis and photoelectrochemical (PEC) reactions are complex processes involving both the physical properties and surface chemistry of the semiconductor photocatalyst. Their interplay applies specific limitations on the performance of different materials in light-driven reactions, often despite their optimal band structure and optical absorption. One of the ways to properly characterize the photocatalytic and PEC properties of semiconductors remains the measurement of the photopotential, which characterizes a driving force of photoinduced processes in the material. In this work, we give a general scope on the photopotential in PEC reactions that finds its origin in semiconductor physics. It is shown that the photopotential does not always play an interchangeable role with the photocurrent in comparative analysis of the photocatalytic performance of different materials. Furthermore, a correlation between the photopotential and the kinetics of methylene blue dye photocatalysis is shown for anatase-TiO2, CeO2 and WO3 as photocatalysts. Fermi level pinning (FLP) in the bandgap of CeO2 is observed limiting the photoactivity of the compound, which is attributed to the high defectivity of CeO2. A short review is given on the possible origins of FLP in metal oxides and ways to overcome it. It is pointed out that the shift of the Fermi level after illumination of CeO2 can trigger the chemical instability of the material accompanied by the FLP process. .

9.
R Soc Open Sci ; 11(5): 232019, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721131

RESUMEN

The search for novel classes of hole-transporting materials (HTMs) is a very important task in advancing the commercialization of various photovoltaic devices. Meeting specific requirements, such as charge-carrier mobility, appropriate energy levels and thermal stability, is essential for determining the suitability of an HTM for a given application. In this work, two spirobisindane-based compounds, bearing terminating hole transporting enamine units, were strategically designed and synthesized using commercially available starting materials. The target compounds exhibit adequate thermal stability; they are amorphous and their glass-transition temperatures (>150°C) are high, which minimizes the probability of direct layer crystallization. V1476 stands out with the highest zero-field hole-drift mobility, approaching 1 × 10-5 cm2 V s-1. To assess the compatibility of the highest occupied molecular orbital energy levels of the spirobisindane-based HTMs in solar cells, the solid-state ionization potential (Ip) was measured by the electron photoemission in air of the thin-film method. The favourable morphological properties, energy levels and hole mobility in combination with a simple synthesis make V1476 and related compounds promising materials for HTM applications in antimony-based solar cells and triple-cation-based perovskite solar cells.

10.
RSC Adv ; 14(21): 14973-14981, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38737649

RESUMEN

New semiconductors containing fluorene or fluorenone central fragments along with phosphonic acid anchoring groups were synthesized and investigated as electron transporting materials for possible application in photovoltaic devices. These derivatives demonstrate good thermal stability and suitable electrochemical properties for effective electron transport from perovskite, Sb2S3 and Sb2Se3 absorber layers. Self-assembled fluorene and fluorenone electron-transporting materials have shown improved substrate wettability, indicating bond formation between monolayer-forming compounds and the ITO, TiO2, Sb2S3, or Sb2Se3 surface. Additionally, investigated materials have compatible energetic band alignment and can passivate perovskite interface defects, which makes them interesting candidates for application in the n-i-p structure perovskite solar cell.

11.
R Soc Open Sci ; 10(7): 230260, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37501661

RESUMEN

Due to the ease of synthesis and the ability to easily tune properties, organic semiconductors are widely researched and used in many optoelectronic applications. Requirements such as thermal stability, appropriate energy levels and charge-carrier mobility have to be met in order to consider the suitability of an organic semiconductor for a specific application. Balancing of said properties is not a trivial task; often one characteristic is sacrificed to improve the other and therefore a search for well-balanced materials is necessary. Herein, seven new charge-transporting biphenyl-based enamine molecules are reported. The new materials were synthesized using a simple one-step reaction without the use of expensive transition metal catalysts. It was observed that subtle variations in the structure lead to notable changes in the properties. Materials exhibited high thermal stability and relatively high carrier drift mobility, reaching 2 × 10-2 cm2V-1 s-1 (for BE3) at strong electric fields. Based on the results, three materials show the potential to be applied in organic light emitting diodes and solar cells.

12.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36839052

RESUMEN

Rare-earth oxyhydride (ReOxHy) films are novel inorganic photochromic materials that have strong potential for applications in windows and optical sensors. Cations greatly influence many material properties and play an important role in the photochromic performance of ReOxHy. Here we propose a strategy for obtaining Gd1-zYzOxHy films (z = 1, 0.7, 0.5, 0.4, 0.35, 0.25, 0.15, 0) using one-step direct-current (DC) magnetron co-sputtering. Distinct from the mixed anion systems, such material would belong to the class of mixed anion and mixed cation materials. For Gd1-zYzOxHy films, different co-doping ratios can help tune the contrast ratio (that is, the difference between coloration and bleaching transmittance) and cycling degradation, which may be related to the lattice constant. X-ray diffraction (XRD) patterns show that the lattice constant increases from 5.38 Å for YOxHy to 5.51 Å, corresponding to Gd0.75Y0.25OxHy. The contrast ratio, in particular, can be enhanced to 37% from 6.3% by increasing the lattice constant, directly controlled by the co-sputtering power. When the lattice constant decreases, the surface morphology of the sample with the smallest lattice constant is essentially unchanged by testing in air with normal oxidation for 100 days, suggesting great improvement in environment durability. However, the crystal structure cannot be overly compressed, and co-sputtering with Cr gives black opaque films without photochromic properties. Moreover, because the atomic mass of different rare earth elements is different, the critical pressure p* (films deposited at p < p* remain metallic dihydrides) is different, and the preparation window is enlarged. Our work provides insights into innovative photochromic materials that can help to achieve commercial production and application.

13.
Nanomaterials (Basel) ; 13(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38132990

RESUMEN

Oxyhydrides of rare-earth metals (REMOHs) exhibit notable photochromic behaviors. Among these, yttrium oxyhydride (YHO) stands out for its impressive transparency and swift UV-responsive color change, positioning it as an optimal material for self-cleaning window applications. Although semiconductor photocatalysis holds potential solutions for critical environmental issues, optimizing the photocatalytic efficacy of photochromic substances has not been adequately addressed. This research advances the study of REMOHs, focusing on the properties of gadolinium oxyhydride (GdHO) both theoretically and experimentally. The electronic and structural characteristics of GdHO, vital for ceramic technology, are thoroughly examined. Explicitly determined work functions for GdH2, GdHO, and Gd2O3 stand at 3.4 eV, 3.0 eV, and 4.3 eV, respectively. Bader charge analysis showcases GdHO's intricate bonding attributes, whereas its electron localization function majorly presents an ionic nature. The charge neutrality level is situated about 0.33 eV below the top valence band, highlighting these materials' inclination for acceptor-dominant electrical conductivity. Remarkably, this research unveils GdHO films' photocatalytic capabilities for the first time. Even with their restricted surface due to thinness, these films follow the Langmuir-Hinshelwood degradation kinetics, ensuring total degradation of methylene blue in a day. It was observed that GdHO's work function diminishes with reduced deposition pressure, and UV exposure further decreases it by 0.2 eV-a change that reverts post-UV exposure. The persistent stability of GdHO films, hinting at feasible recyclability, enhances their potential efficiency, underlining their viability in practical applications. Overall, this study accentuates GdHO's pivotal role in electronics and photocatalysis, representing a landmark advancement in the domain.

14.
ACS Appl Energy Mater ; 6(7): 3822-3833, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37064413

RESUMEN

Fluorene-based hole transport materials (HTMs) with terminating thiophene units are explored, for the first time, for antimony sulfide (Sb2S3) solar cells. These HTMs possess largely simplified synthesis processes and high yields compared to the conventional expensive hole conductors making them reasonably economical. The thiophene unit-linked HTMs have been successfully demonstrated in ultrasonic spray-deposited Sb2S3 solar cells resulting in efficiencies in the range of 4.7-4.9% with an average visible transmittance (AVT) of 30-33% (400-800 nm) for the cell stack without metal contact, while the cells fabricated using conventional P3HT have yielded an efficiency of 4.7% with an AVT of 26%. The study puts forward cost-effective and transparent HTMs that avoid a post-coating activation at elevated temperatures like P3HT, devoid of parasitic absorption losses in the visible region and are demonstrated to be well aligned for the band edges of Sb2S3 thereby ascertaining their suitability for Sb2S3 solar cells and are potential candidates for semitransparent applications.

15.
Nanomaterials (Basel) ; 12(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893534

RESUMEN

Special attention has recently been paid to surface-defective titanium dioxide and black TiO2 with advanced optical, electrical, and photocatalytic properties. Synthesis of these materials for photodegradation and mineralization of persistent organic pollutants in water, especially under visible radiation, presents interest from scientific and application points of view. Chemical reduction by heating a TiO2 and NaBH4 mixture at 350 °C successfully introduced Ti3+ defects and oxygen vacancies at the surface of TiO2, with an increase in the photocatalytic degradation of amoxicillin-an antibiotic that is present in wastewater due to its intense use in human and animal medicine. Three TiO2 samples were prepared at different annealing temperatures to control the ratio between anatase and rutile and were subjected to chemical reduction. Electron paramagnetic resonance investigations showed that the formation of surface Ti3+ defects in a high concentration occurred mainly in the anatase sample annealed at 400 °C, contributing to the bandgap reduction from 3.32 eV to 2.92 eV. The reduced band gap enhances visible light absorption and the efficiency of photocatalysis. The nanoparticles of ~90 m2/g specific surface area and 12 nm average size exhibit ~100% efficiency in the degradation of amoxicillin under simulated solar irradiation compared with pristine TiO2. Mineralization of amoxicillin and by-products was over 75% after 48 h irradiation for the anatase sample, where the Ti3+ defects were present in a higher concentration at the catalyst's surface.

16.
Environ Sci Pollut Res Int ; 29(27): 40893-40902, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35084677

RESUMEN

The aim of this work is study of physical and chemical properties of dust of the Pre-Aral region of Uzbekistan such as Karakalpakstan and Khorezm that are located near the three deserts such as the Aralkum, Karakum, and Kyzylkum. The dust particles fell on glass have been collected in Karakalpakstan and Khorezm and studied systematically by employing wide range of methods. Particle volume vs size distribution has been measured with maximum around 600 nm and ~ 10 µm. The major and minor constituent materials present in the dust have been studied systematically by X-ray fluorescence spectroscopy, energy dispersive X-ray diffraction, and inductively coupled plasma optical emission spectroscopy. Main characteristic absorption bands corresponding to Si-O, Si-O-Si bonding in quartz and Fe-O bonds in hematite Fe2O3 have been identified by infrared and Raman spectroscopy. Quartz, hematite, lime, corundum, magnesia, and several other trace minerals have been identified in the dust particles. X-ray diffraction peaks corresponding to quartz, hematite, and corundum are sharp and are found to be more crystalline with some level of disorder. Analysis of the particle size and crystallinity on human being has been performed: disordered or crystalline quartz can create the lung disease; the particles in the size of 0.5-0.7 µm may produce diseases such as chronic silicosis, silicosis, and silica tuberculosis whereas hematite might create lung disease. Dust particles worsen optical transmittance of glass of the panels.


Asunto(s)
Polvo , Silicosis , Óxido de Aluminio/análisis , Polvo/análisis , Humanos , Tamaño de la Partícula , Cuarzo , Uzbekistán
17.
Nanomaterials (Basel) ; 11(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34578615

RESUMEN

Pigments can retain their color for many centuries and can withstand the effects of light and weather. The paint industry suffers from issues like aggressive moisture, corrosion, and further environmental contamination of the pigment materials. Low-cost, long-lasting, and large-scale pigments are highly desirable to protect against the challenges of contamination that exist in the paint industry. This exploratory study reinforces the color and thermal stability of industrial-grade (IG) magnetite (Fe3O4). IG Fe3O4 pigments were further considered for surface treatment with sodium hexametaphosphate (SHMP). This metaphosphate hexamer sequestrant provides good dispersion ability and a high surface energy giving thermal and dust protection to the pigment. Various physicochemical characterizations were employed to understand the effectiveness of this treatment across various temperatures (180-300 °C). The X-ray diffraction, Raman, and X-ray photoelectron spectroscopy techniques signify that the SHMP-treated Fe3O4 acquired magnetite phase stability up to 300 °C. In addition, the delta-E color difference method was also adopted to measure the effective pigment properties, where the delta-E value significantly decreased from 8.77 to 0.84 once treated with SHMP at 300 °C. The distinct color retention at 300 °C and the improved dispersion properties of surface-treated Fe3O4 positions this pigment as a robust candidate for high-temperature paint and coating applications. This study further encompasses an effort to design low-cost, large-scale, and thermally stable pigments that can protect against UV-rays, dust, corrosion, and other color contaminants that are endured by building paints.

18.
Materials (Basel) ; 13(4)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098454

RESUMEN

Examination of possible pathways of how oxygen atoms can be added to a yttrium oxyhydride system allowed us to predict new derivatives such as hydroxyhydrides possessing the composition M2H3O(OH) (M = Y, Sc, La, and Gd) in which three different anions (H-, O2-, and OH-) share the common chemical space. The crystal data of the solid hydroxyhydrides obtained on the base of DFT modeling correspond to the tetragonal structure that is characterized by the chiral space group P 4 1 . The analysis of bonding situation in M2H3O(OH) showed that the microscopic mechanism governing chemical transformations is caused by the displacements of protons which are induced by interaction with oxygen atoms incorporated into the crystal lattice of the bulk oxyhydride. The oxygen-mediated transformation causes a change in the charge state of some adjacent hydridic sites, thus forming protonic sites associated with hydroxyl groups. The predicted materials demonstrate a specific charge ordering that is associated with the chiral structural organization of the metal cations and the anions because their lattice positions form helical curves spreading along the tetragonal axis. Moreover, the effect of spatial twisting of the H- and H+ sites provides additional linking via strong dihydrogen bonds. The structure-property relationships have been investigated in terms of structural, mechanical, electron, and optical features. It was shown that good polar properties of the materials make them possible prototypes for the design of nonlinear optical systems.

19.
Nanomaterials (Basel) ; 11(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379229

RESUMEN

The fabrication of cost-effective photostable materials with optoelectronic properties suitable for commercial photoelectrochemical (PEC) water splitting represents a complex task. Herein, we present a simple route to produce Sb2Se3 that meets most of the requirements for high-performance photocathodes. Annealing of Sb2Se3 layers in a selenium-containing atmosphere persists as a necessary step for improving device parameters; however, it could complicate industrial processability. To develop a safe and scalable alternative to the selenium physical post-processing, we propose a novel SbCl3/glycerol-based thermochemical treatment for controlling anisotropy, a severe problem for Sb2Se3. Our procedure makes it possible to selectively etch antimony-rich oxyselenide presented in Sb2Se3, to obtain high-quality compact thin films with a favorable morphology, stoichiometric composition, and crystallographic orientation. The treated Sb2Se3 photoelectrode demonstrates a record photocurrent density of about 31 mA cm-2 at -248 mV against the calomel electrode and can thus offer a breakthrough option for industrial solar fuel fabrication.

20.
Sci Rep ; 10(1): 5503, 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32218520

RESUMEN

Transition metal oxides potentially present higher specific capacities than the current anodes based on carbon, providing an increasing energy density as compared to commercial Li-ion batteries. However, many parameters could influence the performance of the batteries, which depend on the processing of the electrode materials leading to different surface properties, sizes or crystalline phases. In this work a comparative study of tin and titanium oxide nanoparticles synthesized by different methods, undoped or Li doped, used as single components or in mixed ratio, or alternatively forming a composite with graphene oxide have been tested demonstrating an enhancement in capacity with Li doping and better cyclability for mixed phases and composite anodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA