Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
PLoS Genet ; 17(11): e1009843, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780465

RESUMEN

Intergenic transcription is a common feature of eukaryotic genomes and performs important and diverse cellular functions. Here, we investigate the iab-8 ncRNA from the Drosophila Bithorax Complex and show that this RNA is able to repress the transcription of genes located at its 3' end by a sequence-independent, transcriptional interference mechanism. Although this RNA is expressed in the early epidermis and CNS, we find that its repressive activity is limited to the CNS, where, in wild-type embryos, it acts on the Hox gene, abd-A, located immediately downstream of it. The CNS specificity is achieved through a 3' extension of the transcript, mediated by the neuronal-specific, RNA-binding protein, ELAV. Loss of ELAV activity eliminates the 3' extension and results in the ectopic activation of abd-A. Thus, a tissue-specific change in the length of a ncRNA is used to generate a precise pattern of gene expression in a higher eukaryote.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas ELAV/genética , Genes Homeobox , Proteínas Nucleares/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Drosophila melanogaster/embriología , Genes Reporteros , MicroARNs/genética , ARN Largo no Codificante/genética , Eliminación de Secuencia
2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876742

RESUMEN

Even in well-characterized genomes, many transcripts are considered noncoding RNAs (ncRNAs) simply due to the absence of large open reading frames (ORFs). However, it is now becoming clear that many small ORFs (smORFs) produce peptides with important biological functions. In the process of characterizing the ribosome-bound transcriptome of an important cell type of the seminal fluid-producing accessory gland of Drosophila melanogaster, we detected an RNA, previously thought to be noncoding, called male-specific abdominal (msa). Notably, msa is nested in the HOX gene cluster of the Bithorax complex and is known to contain a micro-RNA within one of its introns. We find that this RNA encodes a "micropeptide" (9 or 20 amino acids, MSAmiP) that is expressed exclusively in the secondary cells of the male accessory gland, where it seems to accumulate in nuclei. Importantly, loss of function of this micropeptide causes defects in sperm competition. In addition to bringing insights into the biology of a rare cell type, this work underlines the importance of small peptides, a class of molecules that is now emerging as important actors in complex biological processes.


Asunto(s)
Infertilidad Masculina/genética , Mutación con Pérdida de Función , Espermatozoides/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Masculino , Péptidos/genética , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Traffic ; 20(2): 137-151, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30426623

RESUMEN

The male seminal fluid contains factors that affect female post-mating behavior and physiology. In Drosophila, most of these factors are secreted by the two epithelial cell types that make up the male accessory gland: the main and secondary cells. Although secondary cells represent only ~4% of the cells of the accessory gland, their contribution to the male seminal fluid is essential for sustaining the female post-mating response. To better understand the function of the secondary cells, we investigated their molecular organization, particularly with respect to the intracellular membrane transport machinery. We determined that large vacuole-like structures found in the secondary cells are trafficking hubs labeled by Rab6, 7, 11 and 19. Furthermore, these organelles require Rab6 for their formation and many are essential in the process of creating the long-term postmating behavior of females. In order to better serve the intracellular membrane and protein trafficking communities, we have created a searchable, online, open-access imaging resource to display our complete findings regarding Rab localization in the accessory gland.


Asunto(s)
Proteínas de Drosophila/metabolismo , Células Endocrinas/citología , Fertilidad , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Endocrinas/metabolismo , Genitales Masculinos/citología , Genitales Masculinos/metabolismo , Masculino , Transporte de Proteínas , Vacuolas/metabolismo , Vacuolas/ultraestructura , Proteínas de Unión al GTP rab/genética
4.
PLoS Genet ; 14(7): e1007519, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30011265

RESUMEN

Although thousands of long non-coding RNAs (lncRNA) have been identified in the genomes of higher eukaryotes, the precise function of most of them is still unclear. Here, we show that a >65 kb, male-specific, lncRNA, called male-specific abdominal (msa) is required for the development of the secondary cells of the Drosophila male accessory gland (AG). msa is transcribed from within the Drosophila bithorax complex and shares much of its sequence with another lncRNA, the iab-8 lncRNA, which is involved in the development of the central nervous system (CNS). Both lncRNAs perform much of their functions via a shared miRNA embedded within their sequences. Loss of msa, or of the miRNA it contains, causes defects in secondary cell morphology and reduces male fertility. Although both lncRNAs express the same miRNA, the phenotype in the secondary cells and the CNS seem to reflect misregulation of different targets in the two tissues.


Asunto(s)
Drosophila/fisiología , Organogénesis/genética , ARN Largo no Codificante/fisiología , Animales , Animales Modificados Genéticamente , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Fertilidad/genética , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Oviposición/fisiología , Fenotipo , Conducta Sexual Animal/fisiología
5.
PLoS Genet ; 12(7): e1006188, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27428541

RESUMEN

Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Proteínas de Homeodominio/genética , Elementos Aisladores , Animales , Sitios de Unión , Cromatina/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Genes de Insecto , Masculino , Modelos Genéticos , Fenotipo , Regiones Promotoras Genéticas
6.
Mol Cell ; 35(6): 782-93, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19782028

RESUMEN

Histone chaperones are involved in a variety of chromatin transactions. By a proteomics survey, we identified the interaction networks of histone chaperones ASF1, CAF1, HIRA, and NAP1. Here, we analyzed the cooperation of H3/H4 chaperone ASF1 and H2A/H2B chaperone NAP1 with two closely related silencing complexes: LAF and RLAF. NAP1 binds RPD3 and LID-associated factors (RLAF) comprising histone deacetylase RPD3, histone H3K4 demethylase LID/KDM5, SIN3A, PF1, EMSY, and MRG15. ASF1 binds LAF, a similar complex lacking RPD3. ASF1 and NAP1 link, respectively, LAF and RLAF to the DNA-binding Su(H)/Hairless complex, which targets the E(spl) NOTCH-regulated genes. ASF1 facilitates gene-selective removal of the H3K4me3 mark by LAF but has no effect on H3 deacetylation. NAP1 directs high nucleosome density near E(spl) control elements and mediates both H3 deacetylation and H3K4me3 demethylation by RLAF. We conclude that histone chaperones ASF1 and NAP1 differentially modulate local chromatin structure during gene-selective silencing.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Silenciador del Gen , Histona Desacetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Acetilación , Animales , Proteínas de Ciclo Celular/genética , Ensamble y Desensamble de Cromatina , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasa 1 , Histona Desacetilasas/genética , Histona Demetilasas , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Metilación , Chaperonas Moleculares/genética , Complejos Multiproteicos , Proteínas Nucleares/genética , Proteína 1 de Ensamblaje de Nucleosomas , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteómica/métodos , Receptores Notch/genética , Proteínas Represoras/genética , Transcripción Genética
7.
Chromosoma ; 124(3): 293-307, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26067031

RESUMEN

After nearly 30 years of effort, Ed Lewis published his 1978 landmark paper in which he described the analysis of a series of mutations that affect the identity of the segments that form along the anterior-posterior (AP) axis of the fly (Lewis 1978). The mutations behaved in a non-canonical fashion in complementation tests, forming what Ed Lewis called a "pseudo-allelic" series. Because of this, he never thought that the mutations represented segment-specific genes. As all of these mutations were grouped to a particular area of the Drosophila third chromosome, the locus became known of as the bithorax complex (BX-C). One of the key findings of Lewis' article was that it revealed for the first time, to a wide scientific audience, that there was a remarkable correlation between the order of the segment-specific mutations along the chromosome and the order of the segments they affected along the AP axis. In Ed Lewis' eyes, the mutants he discovered affected "segment-specific functions" that were sequentially activated along the chromosome as one moves from anterior to posterior along the body axis (the colinearity concept now cited in elementary biology textbooks). The nature of the "segment-specific functions" started to become clear when the BX-C was cloned through the pioneering chromosomal walk initiated in the mid 1980s by the Hogness and Bender laboratories (Bender et al. 1983a; Karch et al. 1985). Through this molecular biology effort, and along with genetic characterizations performed by Gines Morata's group in Madrid (Sanchez-Herrero et al. 1985) and Robert Whittle's in Sussex (Tiong et al. 1985), it soon became clear that the whole BX-C encoded only three protein-coding genes (Ubx, abd-A, and Abd-B). Later, immunostaining against the Ubx protein hinted that the segment-specific functions could, in fact, be cis-regulatory elements regulating the expression of the three protein-coding genes. In 1987, Peifer, Karch, and Bender proposed a comprehensive model of the functioning of the BX-C, in which the "segment-specific functions" appear as segment-specific enhancers regulating, Ubx, abd-A, or Abd-B (Peifer et al. 1987). Key to their model was that the segmental address of these enhancers was not an inherent ability of the enhancers themselves, but was determined by the chromosomal location in which they lay. In their view, the sequential activation of the segment-specific functions resulted from the sequential opening of chromatin domains along the chromosome as one moves from anterior to posterior. This model soon became known of as the open for business model. While the open for business model is quite easy to visualize at a conceptual level, molecular evidence to validate this model has been missing for almost 30 years. The recent publication describing the outstanding, joint effort from the Bender and Kingston laboratories now provides the missing proof to support this model (Bowman et al. 2014). The purpose of this article is to review the open for business model and take the reader through the genetic arguments that led to its elaboration.


Asunto(s)
Drosophila/genética , Modelos Biológicos , Animales , Cromosomas de Insectos , Elementos de Facilitación Genéticos , Mutación
8.
PLoS Genet ; 9(3): e1003395, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555301

RESUMEN

In insects, products of the male reproductive tract are essential for initiating and maintaining the female post-mating response (PMR). The PMR includes changes in egg laying, receptivity to courting males, and sperm storage. In Drosophila, previous studies have determined that the main cells of the male accessory gland produce some of the products required for these processes. However, nothing was known about the contribution of the gland's other secretory cell type, the secondary cells. In the course of investigating the late functions of the homeotic gene, Abdominal-B (Abd-B), we discovered that Abd-B is specifically expressed in the secondary cells of the Drosophila male accessory gland. Using an Abd-B BAC reporter coupled with a collection of genetic deletions, we discovered an enhancer from the iab-6 regulatory domain that is responsible for Abd-B expression in these cells and that apparently works independently from the segmentally regulated chromatin domains of the bithorax complex. Removal of this enhancer results in visible morphological defects in the secondary cells. We determined that mates of iab-6 mutant males show defects in long-term egg laying and suppression of receptivity, and that products of the secondary cells are influential during sperm competition. Many of these phenotypes seem to be caused by a defect in the storage and gradual release of sex peptide in female mates of iab-6 mutant males. We also found that Abd-B expression in the secondary cells contributes to glycosylation of at least three accessory gland proteins: ovulin (Acp26Aa), CG1656, and CG1652. Our results demonstrate that long-term post-mating changes observed in mated females are not solely induced by main cell secretions, as previously believed, but that secondary cells also play an important role in male fertility by extending the female PMR. Overall, these discoveries provide new insights into how these two cell types cooperate to produce and maintain a robust female PMR.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Elementos de Facilitación Genéticos , Proteínas de Homeodominio , Péptidos , Reproducción , Animales , Cromatina/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Regulación de la Expresión Génica , Glicosilación , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/fisiología , Péptidos y Proteínas de Señalización Intercelular , Masculino , Mutación , Oviposición/genética , Oviposición/fisiología , Péptidos/genética , Péptidos/metabolismo , Péptidos/fisiología , Fenotipo , Reproducción/genética , Reproducción/fisiología
9.
BMC Biol ; 13: 71, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26329471

RESUMEN

Mutations in the proteins that bind insulator DNA elements that define the boundaries of chromatin domains can give morphogenetic readouts in Drosophila, as recently reported in BMC Biology by Bonchuk et al. in the Georgiev laboratory. But disentangling the effects on the phenotype may not be simple.See research article: http://www.biomedcentral.com/1741-7007/13/63.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Animales , Femenino , Masculino
10.
PLoS Genet ; 8(5): e1002720, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22654672

RESUMEN

The homeotic genes in Drosophila melanogaster are aligned on the chromosome in the order of the body segments that they affect. The genes affecting the more posterior segments repress the more anterior genes. This posterior dominance rule must be qualified in the case of abdominal-A (abd-A) repression by Abdominal-B (Abd-B). Animals lacking Abd-B show ectopic expression of abd-A in the epidermis of the eighth abdominal segment, but not in the central nervous system. Repression in these neuronal cells is accomplished by a 92 kb noncoding RNA. This "iab-8 RNA" produces a micro RNA to repress abd-A, but also has a second, redundant repression mechanism that acts only "in cis." Transcriptional interference with the abd-A promoter is the most likely mechanism.


Asunto(s)
Proteínas de Drosophila , MicroARNs/genética , Morfogénesis/genética , Proteínas Nucleares , ARN no Traducido/genética , Factores de Transcripción , Abdomen/crecimiento & desarrollo , Animales , Secuencia de Bases , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Infertilidad/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Mutación , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Nat Genet ; 38(8): 931-5, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16823379

RESUMEN

A cis-regulatory region of nearly 300 kb controls the expression of the three bithorax complex (BX-C) homeotic genes: Ubx, abd-A and Abd-B. Interspersed between the numerous enhancers and silencers within the complex are elements called domain boundaries. Recently, many pieces of evidence have suggested that boundaries function to create autonomous domains by interacting among themselves and forming chromatin loops. In order to test this hypothesis, we used Dam identification to probe for interactions between the Fab-7 boundary and other regions in the BX-C. We were surprised to find that the targeting of Dam methyltransferase (Dam) to the Fab-7 boundary results in a strong methylation signal at the Abd-Bm promoter, approximately 35 kb away. Moreover, this methylation pattern is found primarily in the tissues where Abd-B is not expressed and requires an intact Fab-7 boundary. Overall, our work provides the first documented example of a dynamic, long-distance physical interaction between distal regulatory elements within a living, multicellular organism.


Asunto(s)
Drosophila melanogaster/genética , Genes Homeobox , Genes de Insecto , Animales , Animales Modificados Genéticamente , Metilación de ADN , Drosophila melanogaster/metabolismo , Genes Reguladores , Familia de Multigenes , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética
12.
PLoS Genet ; 7(1): e1001280, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21283785

RESUMEN

The phenotype produced by a given genotype can be strongly modulated by environmental conditions. Therefore, natural populations continuously adapt to environment heterogeneity to maintain optimal phenotypes. It generates a high genetic variation in environment-sensitive gene networks, which is thought to facilitate evolution. Here we analyze the chromatin regulator crm, identified as a candidate for adaptation of Drosophila melanogaster to northern latitudes. We show that crm contributes to environmental canalization. In particular, crm modulates the effect of temperature on a genomic region encoding Hedgehog and Wingless signaling effectors. crm affects this region through both constitutive heterochromatin and Polycomb silencing. Furthermore, we show that crm European and African natural variants shift the reaction norms of plastic traits. Interestingly, traits modulated by crm natural variants can differ markedly between Drosophila species, suggesting that temperature adaptation facilitates their evolution.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Silenciador del Gen , Proteínas Hedgehog/genética , Proteínas de Homeodominio/fisiología , Proteínas Represoras/genética , Factores de Transcripción/fisiología , Proteína Wnt1/genética , Animales , Evolución Biológica , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Femenino , Variación Genética , Heterocromatina/metabolismo , Proteínas de Homeodominio/genética , Masculino , Proteínas del Grupo Polycomb , Transducción de Señal/genética , Temperatura , Factores de Transcripción/genética
13.
PLoS Genet ; 6(12): e1001260, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21203501

RESUMEN

A >300 kb cis-regulatory region is required for the proper expression of the three bithorax complex (BX-C) homeotic genes. Based on genetic and transgenic analysis, a model has been proposed in which the numerous BX-C cis-regulatory elements are spatially restricted through the activation or repression of parasegment-specific chromatin domains. Particular early embryonic enhancers, called initiators, have been proposed to control this complex process. Here, in order to better understand the process of domain activation, we have undertaken a systematic in situ dissection of the iab-6 cis-regulatory domain using a new method, called InSIRT. Using this method, we create and genetically characterize mutations affecting iab-6 function, including mutations specifically modifying the iab-6 initiator. Through our mutagenesis of the iab-6 initiator, we provide strong evidence that initiators function not to directly control homeotic gene expression but rather as domain control centers to determine the activity state of the enhancers and silencers within a cis-regulatory domain.


Asunto(s)
Drosophila/embriología , Drosophila/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutagénesis , Elementos Reguladores de la Transcripción
14.
Dev Cell ; 13(4): 593-600, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17925233

RESUMEN

The histone chaperone Asf1 assists in chromatin assembly and remodeling during replication, transcription activation, and gene silencing. However, it has been unclear to what extent Asf1 could be targeted to specific loci via interactions with sequence-specific DNA-binding proteins. Here, we show that Asf1 contributes to the repression of Notch target genes, as depletion of Asf1 in cells by RNAi causes derepression of the E(spl) Notch-inducible genes. Conversely, overexpression of Asf1 in vivo results in decreased expression of target genes and produces phenotypes that are strongly modified (enhanced and suppressed) by mutations affecting the Notch pathway, but not by mutations in other signaling pathways. Asf1 can be coprecipitated with the DNA-binding protein Su(H) and the corepressor Hairless and interacts directly with two components of this complex, Hairless and SKIP. Thus, in addition to playing more general roles in chromatin dynamics, Asf1 is directed via interactions with sequence-specific complexes to mediate silencing of specific target genes.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Silenciador del Gen , Animales , Proteínas de Ciclo Celular/genética , Ojo Compuesto de los Artrópodos/anomalías , Ojo Compuesto de los Artrópodos/metabolismo , Ojo Compuesto de los Artrópodos/fisiología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutación , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Alas de Animales/anomalías , Alas de Animales/metabolismo , Alas de Animales/fisiología
15.
Chromosoma ; 120(3): 297-307, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21336627

RESUMEN

CRAMPED (CRM), conserved from plants to animals, was previously characterized genetically as a repressive factor involved in the formation of facultative and constitutive heterochromatin (Polycomb silencing, position effect variegation). We show that crm is dynamically regulated during replication and identify the Histone gene cluster (His-C) as a major CRM target. Surprisingly, CRM is specifically required for the expression of the Histone H1 gene, like the promoter-bound transcription factor TRF2. Consistently with this, CRM genetically interacts and co-immunoprecipitates with TRF2. However, the Polycomb phenotypes observed in crm mutants are not observed in TRF2 hypomorphic mutants, suggesting that they correspond to independent roles of CRM. CRM is thus a highly pleiotropic factor involved in both activation and repression.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Histonas/genética , Proteínas de Homeodominio/metabolismo , Proteínas Represoras/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Heterocromatina/genética , Proteínas de Homeodominio/genética , Mutación , Fenotipo , Proteínas del Grupo Polycomb , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Glándulas Salivales/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Factores de Transcripción/genética
16.
Curr Opin Genet Dev ; 17(5): 394-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17904351

RESUMEN

In eukaryotes, enhancers must often exert their effect over many tens of kilobases of DNA with a choice between many different promoters. Given this situation, elements known as chromatin boundaries have evolved to prevent adventitious interactions between enhancers and promoters. The amenability of Drosophila to molecular genetics has been crucial to the discovery and analysis of these elements. Since these elements are involved in such diverse processes and show little or no sequence similarity between them, no single molecular mechanism has been identified that accounts for their activity. However, over the past approximately 5 years, evidence has accumulated suggesting that boundaries probably function through the formation of long-distance chromatin loops. These loops have been proposed to play a crucial role in both controlling enhancer-promoter interactions and packing DNA.


Asunto(s)
Drosophila melanogaster/genética , Elementos Aisladores/fisiología , Animales , Genes Reporteros , Humanos , Hibridación in Situ , Regiones Promotoras Genéticas
17.
Adv Exp Med Biol ; 689: 17-40, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20795320

RESUMEN

The discovery of the first homeotic mutation by Calvin Bridges in 1915 profoundly influenced the way we think about developmental processes. Although many mutations modify or deform morphological structures, homeotic mutations cause a spectacular phenotype in which a morphological structure develops like a copy of a structure that is normally found elsewhere on an organism's body plan. This is best illustrated in Drosophila where homeotic mutations were first discovered. For example, Antennapedia mutants have legs developing on their head instead of antennae. Because a mutation in a single gene creates such complete structures, homeotic genes were proposed to be key "selector genes" regulating the initiation of a developmental program. According to this model, once a specific developmental program is initiated (i.e., antenna or leg), it can be executed by downstream "realizator genes" independent of its location along the body axis. Consistent with this idea, homeotic genes have been shown to encode transcription factor proteins that control the activity of the many downstream targets to "realize" a developmental program. Here, we will review the first and perhaps, best characterized homeotic complex, the Bithorax Complex (BX-C).


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Homeodominio/metabolismo , Animales , Cromatina/genética , Cromosomas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/genética , Larva/anatomía & histología , Larva/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Regiones Promotoras Genéticas
18.
Mol Cell Biol ; 26(4): 1434-44, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16449654

RESUMEN

Specific targeting of the protein complexes formed by the Polycomb group of proteins is critically required to maintain the inactive state of a group of developmentally regulated genes. Although the role of DNA binding proteins in this process has been well established, it is still not understood how these proteins target the Polycomb complexes specifically to their response elements. Here we show that the grainyhead gene, which encodes a DNA binding protein, interacts with one such Polycomb response element of the bithorax complex. Grainyhead binds to this element in vitro. Moreover, grainyhead interacts genetically with pleiohomeotic in a transgene-based, pairing-dependent silencing assay. Grainyhead also interacts with Pleiohomeotic in vitro, which facilitates the binding of both proteins to their respective target DNAs. Such interactions between two DNA binding proteins could provide the basis for the cooperative assembly of a nucleoprotein complex formed in vitro. Based on these results and the available data, we propose that the role of DNA binding proteins in Polycomb group-dependent silencing could be described by a model very similar to that of an enhanceosome, wherein the unique arrangement of protein-protein interaction modules exposed by the cooperatively interacting DNA binding proteins provides targeting specificity.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Sitios de Unión/genética , ADN/genética , ADN/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Genes de Insecto , Masculino , Modelos Biológicos , Datos de Secuencia Molecular , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Unión Proteica
19.
J Vis Exp ; (151)2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31545318

RESUMEN

To understand the function of an organ, it is often useful to understand the role of its constituent cell populations. Unfortunately, the rarity of individual cell populations often makes it difficult to obtain enough material for molecular studies. For example, the accessory gland of the Drosophila male reproductive system contains two distinct secretory cell types. The main cells make up 96% of the secretory cells of the gland, while the secondary cells (SC) make up the remaining 4% of cells (about 80 cells per male). Although both cell types produce important components of the seminal fluid, only a few genes are known to be specific to the SCs. The rarity of SCs has, thus far, hindered transcriptomic analysis study of this important cell type. Here, a method is presented that allows for the purification of SCs for RNA extraction and sequencing. The protocol consists in first dissecting glands from flies expressing a SC-specific GFP reporter and then subjecting these glands to protease digestion and mechanical dissociation to obtain individual cells. Following these steps, individual, living, GFP-marked cells are sorted using a fluorescent activated cell sorter (FACS) for RNA purification. This procedure yields SC-specific RNAs from ~40 males per condition for downstream RT-qPCR and/or RNA sequencing in the course of one day. The rapidity and simplicity of the procedure allows for the transcriptomes of many different flies, from different genotypes or environmental conditions, to be determined in a short period of time.


Asunto(s)
Drosophila/citología , Citometría de Flujo/métodos , ARN/aislamiento & purificación , Animales , Masculino , Análisis de Secuencia de ARN , Transcriptoma
20.
Nat Commun ; 10(1): 1833, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015428

RESUMEN

In response to extracellular signals, many signalling proteins associated with the plasma membrane are sorted into endosomes. This involves endosomal fusion, which depends on the complexes HOPS and CORVET. Whether and how their subunits themselves modulate signal transduction is unknown. We show that Vps11 and Vps18 (Vps11/18), two common subunits of the HOPS/CORVET complexes, are E3 ubiquitin ligases. Upon overexpression of Vps11/Vps18, we find perturbations of ubiquitination in signal transduction pathways. We specifically demonstrate that Vps11/18 regulate several signalling factors and pathways, including Wnt, estrogen receptor α (ERα), and NFκB. For ERα, we demonstrate that the Vps11/18-mediated ubiquitination of the scaffold protein PELP1 impairs the activation of ERα by c-Src. Thus, proteins involved in membrane traffic, in addition to performing their well-described role in endosomal fusion, fine-tune signalling in several different ways, including through ubiquitination.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Endosomas/metabolismo , Factores de Transcripción/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteína Tirosina Quinasa CSK , Receptor alfa de Estrógeno/metabolismo , Células HEK293 , Humanos , Células MCF-7 , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Ubiquitinación/fisiología , Proteínas Wnt/metabolismo , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA