Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 34(5): 796-809, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38749656

RESUMEN

Underrepresented populations are often excluded from genomic studies owing in part to a lack of resources supporting their analyses. The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP), which have recently been sequenced to high coverage, are valuable genomic resources because of the global diversity they capture and their open data sharing policies. Here, we harmonized a high-quality set of 4094 whole genomes from 80 populations in the HGDP and 1kGP with data from the Genome Aggregation Database (gnomAD) and identified over 153 million high-quality SNVs, indels, and SVs. We performed a detailed ancestry analysis of this cohort, characterizing population structure and patterns of admixture across populations, analyzing site frequency spectra, and measuring variant counts at global and subcontinental levels. We also show substantial added value from this data set compared with the prior versions of the component resources, typically combined via liftOver and variant intersection; for example, we catalog millions of new genetic variants, mostly rare, compared with previous releases. In addition to unrestricted individual-level public release, we provide detailed tutorials for conducting many of the most common quality-control steps and analyses with these data in a scalable cloud-computing environment and publicly release this new phased joint callset for use as a haplotype resource in phasing and imputation pipelines. This jointly called reference panel will serve as a key resource to support research of diverse ancestry populations.


Asunto(s)
Bases de Datos Genéticas , Genoma Humano , Humanos , Proyecto Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Variación Genética , Genómica/métodos
4.
Nat Commun ; 15(1): 1881, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424437

RESUMEN

Germline pathogenic variants associated with increased childhood mortality must be subject to natural selection. Here, we analyze publicly available germline genetic metadata from 4,574 children with cancer [11 studies; 1,083 whole exome sequences (WES), 1,950 whole genome sequences (WGS), and 1,541 gene panel] and 141,456 adults [125,748 WES and 15,708 WGS]. We find that pediatric cancer predisposition syndrome (pCPS) genes [n = 85] are highly constrained, harboring only a quarter of the loss-of-function variants that would be expected. This strong indication of selective pressure on pCPS genes is found across multiple lines of germline genomics data from both pediatric and adult cohorts. For six genes [ELP1, GPR161, VHL and SDHA/B/C], a clear lack of mutational constraint calls the pediatric penetrance and/or severity of associated cancers into question. Conversely, out of 23 known pCPS genes associated with biallelic risk, two [9%, DIS3L2 and MSH2] show significant constraint, indicating that they may monoallelically increase childhood cancer risk. In summary, we show that population genetic data provide empirical evidence that heritable childhood cancer leads to natural selection powerful enough to have significantly impacted the present-day gene pool.


Asunto(s)
Neoplasias , Adulto , Humanos , Niño , Neoplasias/genética , Predisposición Genética a la Enfermedad , Pool de Genes , Mutación , Mutación de Línea Germinal
5.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38260295

RESUMEN

The Variant Call Format (VCF) is widely used in genome sequencing but scales poorly. For instance, we estimate a 150,000 genome VCF would occupy 900 TiB, making it both costly and complicated to produce and analyze. The issue stems from VCF's requirement to densely represent both reference-genotypes and allele-indexed arrays. These requirements lead to unnecessary data duplication and, ultimately, very large files. To address these challenges, we introduce the Scalable Variant Call Representation (SVCR). This representation reduces file sizes by ensuring they scale linearly with samples. SVCR achieves this by adopting reference blocks from the Genomic Variant Call Format (GVCF) and employing local allele indices. SVCR is also lossless and mergeable, allowing for N+1 and N+K incremental joint-calling. We present two implementations of SVCR: SVCR-VCF, which encodes SVCR in VCF format, and VDS, which uses Hail's native format. Our experiments confirm the linear scalability of SVCR-VCF and VDS, in contrast to the super-linear growth seen with standard VCF files. We also discuss the VDS Combiner, a scalable, open-source tool for producing a VDS from GVCFs and unique features of VDS which enable rapid data analysis. SVCR, and VDS in particular, ensure the scientific community can generate, analyze, and disseminate genetics datasets with millions of samples.

6.
Nat Hum Behav ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965376

RESUMEN

Data within biobanks capture broad yet detailed indices of human variation, but biobank-wide insights can be difficult to extract due to complexity and scale. Here, using large-scale factor analysis, we distill hundreds of variables (diagnoses, assessments and survey items) into 35 latent constructs, using data from unrelated individuals with predominantly estimated European genetic ancestry in UK Biobank. These factors recapitulate known disease classifications, disentangle elements of socioeconomic status, highlight the relevance of psychiatric constructs to health and improve measurement of pro-health behaviours. We go on to demonstrate the power of this approach to clarify genetic signal, enhance discovery and identify associations between underlying phenotypic structure and health outcomes. In building a deeper understanding of ways in which constructs such as socioeconomic status, trauma, or physical activity are structured in the dataset, we emphasize the importance of considering the interwoven nature of the human phenome when evaluating public health patterns.

7.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38645134

RESUMEN

Missense variants can have a range of functional impacts depending on factors such as the specific amino acid substitution and location within the gene. To interpret their deleteriousness, studies have sought to identify regions within genes that are specifically intolerant of missense variation 1-12 . Here, we leverage the patterns of rare missense variation in 125,748 individuals in the Genome Aggregation Database (gnomAD) 13 against a null mutational model to identify transcripts that display regional differences in missense constraint. Missense-depleted regions are enriched for ClinVar 14 pathogenic variants, de novo missense variants from individuals with neurodevelopmental disorders (NDDs) 15,16 , and complex trait heritability. Following ClinGen calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less than 20% of their expected missense variation achieve moderate support for pathogenicity. We create a missense deleteriousness metric (MPC) that incorporates regional constraint and outperforms other deleteriousness scores at stratifying case and control de novo missense variation, with a strong enrichment in NDDs. These results provide additional tools to aid in missense variant interpretation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA