Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Elife ; 122023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36645126

RESUMEN

Coordinated peri-ripple activity in the hippocampal-neocortical network is essential for mnemonic information processing in the brain. Hippocampal ripples likely serve different functions in sleep and awake states. Thus, the corresponding neocortical activity patterns may differ in important ways. We addressed this possibility by conducting voltage and glutamate wide-field imaging of the neocortex with concurrent hippocampal electrophysiology in awake mice. Contrary to our previously published sleep results, deactivation and activation were dominant in post-ripple neocortical voltage and glutamate activity, respectively, especially in the agranular retrosplenial cortex (aRSC). Additionally, the spiking activity of aRSC neurons, estimated by two-photon calcium imaging, revealed the existence of two subpopulations of excitatory neurons with opposite peri-ripple modulation patterns: one increases and the other decreases firing rate. These differences in peri-ripple spatiotemporal patterns of neocortical activity in sleep versus awake states might underlie the reported differences in the function of sleep versus awake ripples.


Asunto(s)
Neocórtex , Ratones , Animales , Neocórtex/fisiología , Vigilia/fisiología , Hipocampo/fisiología , Sueño/fisiología , Neuronas/fisiología
2.
Cell Rep ; 42(5): 112450, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37126447

RESUMEN

Sleep consists of two basic stages: non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM sleep is characterized by slow high-amplitude cortical electroencephalogram (EEG) signals, while REM sleep is characterized by desynchronized cortical rhythms. Despite this, recent electrophysiological studies have suggested the presence of slow waves (SWs) in local cortical areas during REM sleep. Electrophysiological techniques, however, have been unable to resolve the regional structure of these activities because of relatively sparse sampling. Here, we map functional gradients in cortical activity during REM sleep using mesoscale imaging in mice and show local SW patterns occurring mainly in somatomotor and auditory cortical regions with minimum presence within the default mode network. The role of the cholinergic system in local desynchronization during REM sleep is also explored by calcium imaging of cholinergic activity within the cortex and analyzing structural data. We demonstrate weaker cholinergic projections and terminal activity in regions exhibiting frequent SWs during REM sleep.


Asunto(s)
Corteza Auditiva , Sueño de Onda Lenta , Ratones , Animales , Sueño REM/fisiología , Electroencefalografía/métodos , Sueño , Sueño de Onda Lenta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA