Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 298(3): 101670, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120929

RESUMEN

Xylan is the most common hemicellulose in plant cell walls, though the structure of xylan polymers differs between plant species. Here, to gain a better understanding of fungal xylan degradation systems, which can enhance enzymatic saccharification of plant cell walls in industrial processes, we conducted a comparative study of two glycoside hydrolase family 3 (GH3) ß-xylosidases (Bxls), one from the basidiomycete Phanerochaete chrysosporium (PcBxl3), and the other from the ascomycete Trichoderma reesei (TrXyl3A). A comparison of the crystal structures of the two enzymes, both with saccharide bound at the catalytic center, provided insight into the basis of substrate binding at each subsite. PcBxl3 has a substrate-binding pocket at subsite -1, while TrXyl3A has an extra loop that contains additional binding subsites. Furthermore, kinetic experiments revealed that PcBxl3 degraded xylooligosaccharides faster than TrXyl3A, while the KM values of TrXyl3A were lower than those of PcBxl3. The relationship between substrate specificity and degree of polymerization of substrates suggested that PcBxl3 preferentially degrades xylobiose (X2), while TrXyl3A degrades longer xylooligosaccharides. Moreover, docking simulation supported the existence of extended positive subsites of TrXyl3A in the extra loop located at the N-terminus of the protein. Finally, phylogenetic analysis suggests that wood-decaying basidiomycetes use Bxls such as PcBxl3 that act efficiently on xylan structures from woody plants, whereas molds use instead Bxls that efficiently degrade xylan from grass. Our results provide added insights into fungal efficient xylan degradation systems.


Asunto(s)
Ascomicetos , Phanerochaete , Xilanos , Xilosidasas , Ascomicetos/enzimología , Ascomicetos/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Phanerochaete/enzimología , Phanerochaete/genética , Filogenia , Especificidad por Sustrato , Xilanos/metabolismo , Xilosidasas/química , Xilosidasas/genética , Xilosidasas/metabolismo
2.
Chem Rev ; 118(5): 2593-2635, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29155571

RESUMEN

Natural carbohydrate polymers such as starch, cellulose, and chitin provide renewable alternatives to fossil fuels as a source for fuels and materials. As such, there is considerable interest in their conversion for industrial purposes, which is evidenced by the established and emerging markets for products derived from these natural polymers. In many cases, this is achieved via industrial processes that use enzymes to break down carbohydrates to monomer sugars. One of the major challenges facing large-scale industrial applications utilizing natural carbohydrate polymers is rooted in the fact that naturally occurring forms of starch, cellulose, and chitin can have tightly packed organizations of polymer chains with low hydration levels, giving rise to crystalline structures that are highly recalcitrant to enzymatic degradation. The topic of this review is oxidative cleavage of carbohydrate polymers by lytic polysaccharide mono-oxygenases (LPMOs). LPMOs are copper-dependent enzymes (EC 1.14.99.53-56) that, with glycoside hydrolases, participate in the degradation of recalcitrant carbohydrate polymers. Their activity and structural underpinnings provide insights into biological mechanisms of polysaccharide degradation.


Asunto(s)
Cobre/química , Oxigenasas de Función Mixta/metabolismo , Monosacáridos/metabolismo , Oxígeno/metabolismo , Polisacáridos/metabolismo , Dominio Catalítico , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Oxígeno/química , Plantas/metabolismo , Especificidad por Sustrato
3.
J Reprod Dev ; 66(3): 215-221, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051351

RESUMEN

The mechanism by which the content of the major groups of seminal plasma proteins in stallion semen changes between the breeding and non-breeding seasons remains unknown. Here, we investigated the proportions of non-heparin-binding, phosphorylcholine-binding, and heparin-binding proteins in seminal plasma with the aim of relating them to sperm quality and testosterone levels in good and bad freezer stallions. Only minor variations in the major protein groups were found between the breeding and non-breeding seasons. In the non-breeding season, a higher content of a subset of non-heparin binding proteins as well as of heparin-binding proteins was found. Analysis of semen characteristics revealed a somewhat contrasting picture. While only minor variations in sperm kinematics and sperm morphology were found between seasons, the flow-cytometric measurements of mitochondrial membrane potential and also, to some extent, reactive oxygen species production indicated lower sperm quality in the breeding season. Chromatin integrity and testosterone levels were unchanged between seasons. The results suggest that stallion ejaculates could be used year-round for freezing, since only minor differences in protein composition exist between the breeding and non-breeding seasons, as well as between good and bad freezers. In addition, sperm quality is not impaired during the non-breeding season.


Asunto(s)
Especies Reactivas de Oxígeno/metabolismo , Estaciones del Año , Proteínas de Plasma Seminal/metabolismo , Espermatozoides/metabolismo , Animales , Caballos , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Análisis de Semen/veterinaria , Preservación de Semen , Motilidad Espermática/fisiología
4.
J Biol Chem ; 292(46): 19099-19109, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28900033

RESUMEN

For decades, the enzymes of the fungus Hypocrea jecorina have served as a model system for the breakdown of cellulose. Three-dimensional structures for almost all H. jecorina cellulose-degrading enzymes are available, except for HjLPMO9A, belonging to the AA9 family of lytic polysaccharide monooxygenases (LPMOs). These enzymes enhance the hydrolytic activity of cellulases and are essential for cost-efficient conversion of lignocellulosic biomass. Here, using structural and spectroscopic analyses, we found that native HjLPMO9A contains a catalytic domain and a family-1 carbohydrate-binding module (CBM1) connected via a linker sequence. A C terminally truncated variant of HjLPMO9A containing 21 residues of the predicted linker was expressed at levels sufficient for analysis. Here, using structural, spectroscopic, and biochemical analyses, we found that this truncated variant exhibited reduced binding to and activity on cellulose compared with the full-length enzyme. Importantly, a 0.95-Å resolution X-ray structure of truncated HjLPMO9A revealed that the linker forms an integral part of the catalytic domain structure, covering a hydrophobic patch on the catalytic AA9 module. We noted that the oxidized catalytic center contains a Cu(II) coordinated by two His ligands, one of which has a His-brace in which the His-1 terminal amine group also coordinates to a copper. The final equatorial position of the Cu(II) is occupied by a water-derived ligand. The spectroscopic characteristics of the truncated variant were not measurably different from those of full-length HjLPMO9A, indicating that the presence of the CBM1 module increases the affinity of HjLPMO9A for cellulose binding, but does not affect the active site.


Asunto(s)
Hypocrea/enzimología , Oxigenasas de Función Mixta/química , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Celulosa/metabolismo , Cristalografía por Rayos X , Hypocrea/química , Hypocrea/metabolismo , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Polisacáridos/metabolismo , Conformación Proteica , Alineación de Secuencia
5.
J Biol Chem ; 292(42): 17418-17430, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28860192

RESUMEN

Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in Tm and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Proteínas Fúngicas , Calor , Hypocrea , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Cristalografía por Rayos X , Evolución Molecular Dirigida , Estabilidad de Enzimas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hypocrea/enzimología , Hypocrea/genética , Simulación de Dinámica Molecular , Dominios Proteicos
6.
J Biol Chem ; 291(15): 8130-9, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-26783260

RESUMEN

Lipoxygenases (LOX) are non-heme metal enzymes, which oxidize polyunsaturated fatty acids to hydroperoxides. All LOX belong to the same gene family, and they are widely distributed. LOX of animals, plants, and prokaryotes contain iron as the catalytic metal, whereas fungi express LOX with iron or with manganese. Little is known about metal selection by LOX and the adjustment of the redox potentials of their protein-bound catalytic metals. Thirteen three-dimensional structures of animal, plant, and prokaryotic FeLOX are available, but none of MnLOX. The MnLOX of the most important plant pathogen, the rice blast fungusMagnaporthe oryzae(Mo), was expressed inPichia pastoris.Mo-MnLOX was deglycosylated, purified to homogeneity, and subjected to crystal screening and x-ray diffraction. The structure was solved by sulfur and manganese single wavelength anomalous dispersion to a resolution of 2.0 Å. The manganese coordinating sphere is similar to iron ligands of coral 8R-LOX and soybean LOX-1 but is not overlapping. The Asn-473 is positioned on a short loop (Asn-Gln-Gly-Glu-Pro) instead of an α-helix and forms hydrogen bonds with Gln-281. Comparison with FeLOX suggests that Phe-332 and Phe-525 might contribute to the unique suprafacial hydrogen abstraction and oxygenation mechanism of Mo-MnLOX by controlling oxygen access to the pentadiene radical. Modeling suggests that Arg-525 is positioned close to Arg-182 of 8R-LOX, and both residues likely tether the carboxylate group of the substrate. An oxygen channel could not be identified. We conclude that Mo-MnLOX illustrates a partly unique variation of the structural theme of FeLOX.


Asunto(s)
Lipooxigenasa/química , Magnaporthe/enzimología , Oryza/microbiología , Cristalografía por Rayos X , Ácidos Grasos/metabolismo , Lipooxigenasa/metabolismo , Magnaporthe/química , Magnaporthe/metabolismo , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
7.
J Lipid Res ; 57(8): 1574-88, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27313058

RESUMEN

The crystal structure of 13R-manganese lipoxygenase (MnLOX) of Gaeumannomyces graminis (Gg) in complex with zonadhesin of Pichia pastoris was solved by molecular replacement. Zonadhesin contains ß-strands in two subdomains. A comparison of Gg-MnLOX with the 9S-MnLOX of Magnaporthe oryzae (Mo) shows that the protein fold and the geometry of the metal ligands are conserved. The U-shaped active sites differ mainly due to hydrophobic residues of the substrate channel. The volumes and two hydrophobic side pockets near the catalytic base may sanction oxygenation at C-13 and C-9, respectively. Gly-332 of Gg-MnLOX is positioned in the substrate channel between the entrance and the metal center. Replacements with larger residues could restrict oxygen and substrate to reach the active site. C18 fatty acids are likely positioned with C-11 between Mn(2+)OH2 and Leu-336 for hydrogen abstraction and with one side of the 12Z double bond shielded by Phe-337 to prevent antarafacial oxygenation at C-13 and C-11. Phe-347 is positioned at the end of the substrate channel and replacement with smaller residues can position C18 fatty acids for oxygenation at C-9. Gg-MnLOX does not catalyze the sequential lipoxygenation of n-3 fatty acids in contrast to Mo-MnLOX, which illustrates the different configurations of their substrate channels.


Asunto(s)
Proteínas Fúngicas/química , Lipooxigenasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Ácidos Grasos/química , Cinética , Magnaporthe/enzimología , Modelos Moleculares , Oxidación-Reducción , Pichia , Unión Proteica , Estructura Cuaternaria de Proteína
8.
J Biol Chem ; 289(45): 31624-37, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25164811

RESUMEN

Cellulase mixtures from Hypocrea jecorina are commonly used for the saccharification of cellulose in biotechnical applications. The most abundant ß-glucosidase in the mesophilic fungus Hypocrea jecorina is HjCel3A, which hydrolyzes the ß-linkage between two adjacent molecules in dimers and short oligomers of glucose. It has been shown that enhanced levels of HjCel3A in H. jecorina cellulase mixtures benefit the conversion of cellulose to glucose. Biochemical characterization of HjCel3A shows that the enzyme efficiently hydrolyzes (1,4)- as well as (1,2)-, (1,3)-, and (1,6)-ß-D-linked disaccharides. For crystallization studies, HjCel3A was produced in both H. jecorina (HjCel3A) and Pichia pastoris (Pp-HjCel3A). Whereas the thermostabilities of HjCel3A and Pp-HjCel3A are the same, Pp-HjCel3A has a higher degree of N-linked glycosylation. Here, we present x-ray structures of HjCel3A with and without glucose bound in the active site. The structures have a three-domain architecture as observed previously for other glycoside hydrolase family 3 ß-glucosidases. Both production hosts resulted in HjCel3A structures that have N-linked glycosylations at Asn(208) and Asn(310). In H. jecorina-produced HjCel3A, a single N-acetylglucosamine is present at both sites, whereas in Pp-HjCel3A, the P. pastoris-produced HjCel3A enzyme, the glycan chains consist of 8 or 4 saccharides. The glycosylations are involved in intermolecular contacts in the structures derived from either host. Due to the different sizes of the glycosylations, the interactions result in different crystal forms for the two protein forms.


Asunto(s)
Proteínas Fúngicas/química , Glucosidasas/química , Hypocrea/enzimología , beta-Glucosidasa/química , Biomasa , Dominio Catalítico , Celulasa/química , Cristalografía por Rayos X , Glucosa/química , Glucósidos/química , Glicosilación , Enlace de Hidrógeno , Hidrólisis , Ligandos , Espectrometría de Masas , Nitrobencenos/química , Oligosacáridos/química , Pichia/metabolismo , Especificidad por Sustrato , Temperatura , Xilosa/análogos & derivados , Xilosa/química
9.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 9): 2356-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25195749

RESUMEN

Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) play a key role in biomass recycling in nature. They are typically the most abundant enzymes expressed by potent cellulolytic fungi, and are also responsible for the majority of hydrolytic potential in enzyme cocktails for industrial processing of plant biomass. The thermostability of the enzyme is an important parameter for industrial utilization. In this study, Cel7 enzymes from different fungi were expressed in a fungal host and assayed for thermostability, including Hypocrea jecorina Cel7A as a reference. The most stable of the homologues, Humicola grisea var. thermoidea Cel7A, exhibits a 10°C higher melting temperature (T(m) of 72.5°C) and showed a 4-5 times higher initial hydrolysis rate than H. jecorina Cel7A on phosphoric acid-swollen cellulose and showed the best performance of the tested enzymes on pretreated corn stover at elevated temperature (65°C, 24 h). The enzyme shares 57% sequence identity with H. jecorina Cel7A and consists of a GH7 catalytic module connected by a linker to a C-terminal CBM1 carbohydrate-binding module. The crystal structure of the H. grisea var. thermoidea Cel7A catalytic module (1.8 Šresolution; R(work) and R(free) of 0.16 and 0.21, respectively) is similar to those of other GH7 CBHs. The deviations of several loops along the cellulose-binding path between the two molecules in the asymmetric unit indicate higher flexibility than in the less thermostable H. jecorina Cel7A.


Asunto(s)
Celulasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Sordariales/enzimología , Secuencia de Aminoácidos , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Clonación Molecular , Cristalografía por Rayos X , Estabilidad de Enzimas , Genes Fúngicos , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
10.
Arch Biochem Biophys ; 555-556: 9-15, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24857825

RESUMEN

Lipoxygenases (LOX) oxidize polyunsaturated fatty acids to hydroperoxides, which are generated by proton coupled electron transfer to the metal center with FeIIIOH- or MnIIIOH-. Hydrogen abstraction by FeIIIOH- of soybean LOX-1 (sLOX-1) is associated with a large deuterium kinetic isotope effect (D-KIE). Our goal was to compare the D-KIE and other kinetic parameters at different temperatures of sLOX-1 with 13R-LOX with catalytic manganese (13R-MnLOX). The reaction rate and the D-KIE of sLOX-1 with unlabeled and [11-2H2]18:2n-6 were almost temperature independent with an apparent D-KIE of ∼56 at 30°C, which is in agreement with previous studies. In contrast, the reaction rate of 13R-MnLOX increased 7-fold with temperature (8-50°C), and the apparent D-KIE decreased linearly from ∼38 at 8°C to ∼20 at 50°C. The kinetic lag phase of 13R-MnLOX was consistently extended at low temperatures. The Phe337Ile mutant of 13R-MnLOX, which catalyzes antarafacial hydrogen abstraction and oxygenation in analogy with sLOX-1, retained the large D-KIE and its temperature-dependent reaction rate. The kinetic differences between 13R-MnLOX and sLOX-1 may be due to protein dynamics, hydrogen donor-acceptor distances, and to the metal ligands, which may not equalize the 0.7V-gap between the redox potentials of the free metals.


Asunto(s)
Hierro/química , Lipooxigenasa/química , Manganeso/química , Proteínas de Plantas/química , Araquidonato 15-Lipooxigenasa/química , Biocatálisis , Deuterio , Ácidos Grasos Insaturados/química , Humanos , Cinética , Ácido Linoleico/química , Lipooxigenasa/genética , Mutación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Glycine max , Temperatura , Termodinámica , Ácido alfa-Linolénico/química
11.
Foods ; 12(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36766050

RESUMEN

Protein nanofibrils (PNFs) have potential for use in food applications as texture inducers. This study investigated the formation of PNFs from protein extracted from whole fava bean and from its two major storage proteins, globulin fractions 11S and 7S. PNFs were formed by heating (85 °C) the proteins under acidic conditions (pH 2) for 24 h. Thioflavin T fluorescence and atomic force microscopy techniques were used to investigate PNF formation. The foaming properties (capacity, stability, and half-life) were explored for non-fibrillated and fibrillated protein from fava bean, 11S, and 7S to investigate the texturing ability of PNFs at concentrations of 1 and 10 mg/mL and pH 7. The results showed that all three heat-incubated proteins (fava bean, 11S, and 7S) formed straight semi-flexible PNFs. Some differences in the capacity to form PNFs were observed between the two globulin fractions, with the smaller 7S protein being superior to 11S. The fibrillated protein from fava bean, 11S, and 7S generated more voluminous and more stable foams at 10 mg/mL than the corresponding non-fibrillated protein. However, this ability for fibrillated proteins to improve the foam properties seemed to be concentration-dependent, as at 1 mg/mL, the foams were less stable than those made from the non-fibrillated protein.

12.
Biochem J ; 411(2): 241-7, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18072944

RESUMEN

Proximal Cys(172) and Cys(192) in the large subunit of the photosynthetic enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39) are evolutionarily conserved among cyanobacteria, algae and higher plants. Mutation of Cys(172) has been shown to affect the redox properties of Rubisco in vitro and to delay the degradation of the enzyme in vivo under stress conditions. Here, we report the effect of the replacement of Cys(172) and Cys(192) by serine on the catalytic properties, thermostability and three-dimensional structure of Chlamydomonas reinhardtii Rubisco. The most striking effect of the C172S substitution was an 11% increase in the specificity factor when compared with the wild-type enzyme. The specificity factor of C192S Rubisco was not altered. The V(c) (V(max) for carboxylation) was similar to that of wild-type Rubisco in the case of the C172S enzyme, but approx. 30% lower for the C192S Rubisco. In contrast, the K(m) for CO(2) and O(2) was similar for C192S and wild-type enzymes, but distinctly higher (approximately double) for the C172S enzyme. C172S Rubisco showed a critical denaturation temperature approx. 2 degrees C lower than wild-type Rubisco and a distinctly higher denaturation rate at 55 degrees C, whereas C192S Rubisco was only slightly more sensitive to temperature denaturation than the wild-type enzyme. X-ray crystal structures reveal that the C172S mutation causes a shift of the main-chain backbone atoms of beta-strand 1 of the alpha/beta-barrel affecting a number of amino acid side chains. This may cause the exceptional catalytic features of C172S. In contrast, the C192S mutation does not produce similar structural perturbations.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Animales , Sitios de Unión , Catálisis , Chlamydomonas reinhardtii/genética , Cristalografía por Rayos X , Cisteína/genética , Cisteína/metabolismo , Estabilidad de Enzimas , Cinética , Modelos Moleculares , Mutación/genética , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/aislamiento & purificación , Temperatura
13.
Biochemistry ; 47(21): 5746-54, 2008 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-18457422

RESUMEN

The three-dimensional structure of a complete Hypocrea jecorina glucoamylase has been determined at 1.8 A resolution. The presented structure model includes the catalytic and starch binding domains and traces the course of the 37-residue linker segment. While the structures of other fungal and yeast glucoamylase catalytic and starch binding domains have been determined separately, this is the first intact structure that allows visualization of the juxtaposition of the starch binding domain relative to the catalytic domain. The detailed interactions we see between the catalytic and starch binding domains are confirmed in a second independent structure determination of the enzyme in a second crystal form. This second structure model exhibits an identical conformation compared to the first structure model, which suggests that the H. jecorina glucoamylase structure we report is independent of crystal lattice contact restraints and represents the three-dimensional structure found in solution. The proposed starch binding regions for the starch binding domain are aligned with the catalytic domain in the three-dimensional structure in a manner that supports the hypothesis that the starch binding domain serves to target the glucoamylase at sites where the starch granular matrix is disrupted and where the enzyme might most effectively function.


Asunto(s)
Glucano 1,4-alfa-Glucosidasa/química , Hypocrea/enzimología , Sitios de Unión , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
14.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 12): 787-796, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30511673

RESUMEN

The glycoside hydrolase family 3 (GH3) ß-glucosidases are a structurally diverse family of enzymes. Cel3A from Neurospora crassa (NcCel3A) belongs to a subfamily of key enzymes that are crucial for industrial biomass degradation. ß-Glucosidases hydrolyse the ß-1,4 bond at the nonreducing end of cellodextrins. The hydrolysis of cellobiose is of special importance as its accumulation inhibits other cellulases acting on crystalline cellulose. Here, the crystal structure of the biologically relevant dimeric form of NcCel3A is reported. The structure has been refined to 2.25 Šresolution, with an Rcryst and Rfree of 0.18 and 0.22, respectively. NcCel3A is an extensively N-glycosylated glycoprotein that shares 46% sequence identity with Hypocrea jecorina Cel3A, the structure of which has recently been published, and 61% sequence identity with the thermophilic ß-glucosidase from Rasamsonia emersonii. NcCel3A is a three-domain protein with a number of extended loops that deepen the active-site cleft of the enzyme. These structures characterize this subfamily of GH3 ß-glucosidases and account for the high cellobiose specificity of this subfamily.


Asunto(s)
Glicósido Hidrolasas/química , Neurospora crassa/química , beta-Glucosidasa/química , Cristalización , Glicósido Hidrolasas/biosíntesis , Neurospora crassa/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , beta-Glucosidasa/biosíntesis
15.
Acta Crystallogr D Struct Biol ; 72(Pt 7): 860-70, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27377383

RESUMEN

The filamentous fungus Hypocrea jecorina produces a number of cellulases and hemicellulases that act in a concerted fashion on biomass and degrade it into monomeric or oligomeric sugars. ß-Glucosidases are involved in the last step of the degradation of cellulosic biomass and hydrolyse the ß-glycosidic linkage between two adjacent molecules in dimers and oligomers of glucose. In this study, it is shown that substituting the ß-glucosidase from H. jecorina (HjCel3A) with the ß-glucosidase Cel3A from the thermophilic fungus Rasamsonia emersonii (ReCel3A) in enzyme mixtures results in increased efficiency in the saccharification of lignocellulosic materials. Biochemical characterization of ReCel3A, heterologously produced in H. jecorina, reveals a preference for disaccharide substrates over longer gluco-oligosaccharides. Crystallographic studies of ReCel3A revealed a highly N-glycosylated three-domain dimeric protein, as has been observed previously for glycoside hydrolase family 3 ß-glucosidases. The increased thermal stability and saccharification yield and the superior biochemical characteristics of ReCel3A compared with HjCel3A and mixtures containing HjCel3A make ReCel3A an excellent candidate for addition to enzyme mixtures designed to operate at higher temperatures.


Asunto(s)
Eurotiales/enzimología , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Cristalografía por Rayos X , Eurotiales/química , Eurotiales/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glicosilación , Hidrólisis , Hypocrea/química , Hypocrea/enzimología , Hypocrea/metabolismo , Lignina/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
16.
J Mol Biol ; 334(1): 65-73, 2003 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-14596800

RESUMEN

Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyses CO(2) assimilation in biology. A prerequisite for catalysis is an activation process, whereby an active site lysine is selectively carbamylated. The carbamyl group is then stablised by a metal ion, which in vivo is Mg(2+). Other divalent metal ions can replace Mg(2+) as activators in vitro, but the nature of the metal ion strongly influences the catalytic activity of the enzyme and has a differential effect on the ratio of the carboxylation reaction and the competing oxygenation reaction. Biochemical studies show that calcium promotes carbamylation but not catalysis. To investigate the role of the metal in catalysis, we have determined two structures of the enzyme complexed with Ca(2+) and the transition state analogue 2-carboxy-D-arbinitol-1,5-bisphosphate (2CABP). One of the complexes was prepared by soaking 2CABP into crystals of the enzyme-Ca(2+)-product complex, while the other was obtained by cocrystallising the enzyme with calcium and 2CABP under activating conditions. The two crystals belong to different space groups, and one was merohedrally twinned. Both complexes show very similar three-dimensional features. The enzyme is carbamylated at Lys201, and requisite loops close over the bound ligands in the active site, shielding them from the solvent in a manner similar to the corresponding complex with Mg(2+). However, there are subtle differences that could explain the particular role of Ca(2+) in these processes. The larger radius of the calcium ion and its reduced Lewis-acid character causes a significant increase in the required proton hop distance between the C3 proton and the carbamate on Lys201 in the calcium complex. This alone could explain the inability of calcium to sustain catalysis in Rubisco. Similar effects are also expected on subsequent proton transfer steps in the catalytic cycle. Here we also discuss the effect of metal substitution on the dynamics of the ligands around the metal ion.


Asunto(s)
Calcio/metabolismo , Estructura Terciaria de Proteína , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Activación Enzimática , Magnesio/metabolismo , Modelos Moleculares
17.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 4): 522-5, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699754

RESUMEN

Lipoxygenases constitute a family of nonhaem metal enzymes with catalytic iron or, occasionally, catalytic manganese. Lipoxygenases oxidize polyunsaturated fatty acids with position specificity and stereospecificity to hydroperoxides, which contribute to inflammation and the development of cancer. Little is known about the structural differences between lipoxygenases with Fe or Mn and the metal-selection mechanism. A Pichia pastoris expression system was used for the production of the manganese lipoxygenase of the take-all fungus of wheat, Gaeumannomyces graminis. The active enzyme was treated with α-mannosidase, purified to apparent homogeneity and subjected to crystal screening and X-ray diffraction. The crystals diffracted to 2.6 Šresolution and belonged to space group C2, with unit-cell parameters a = 226.6, b = 50.6, c = 177.92 Å, ß = 91.70°.


Asunto(s)
Cristalización/métodos , Cristalografía por Rayos X/métodos , Lipooxigenasa/química , Pichia/enzimología , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Manganeso/metabolismo
18.
J Mol Biol ; 425(3): 622-35, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23220193

RESUMEN

Cellulases, glycoside hydrolases that catalyze the degradation of cellulose, are classified as either endoglucanases or cellobiohydrolases (CBHs) based on their architecture and mode of action on the cellulose. CBHs bind the cellulose chain in a more or less closed tunnel and cleave off cellobiose units processively from one end of the cellulosic polymer, while endoglucanases have their active sites in a more or less open cleft and show a higher tendency to cut bonds internally in the polymer. The CBH Cel6A (also called CBH2) from the ascomycete Hypocrea jecorina has a much shorter substrate-binding tunnel and seems less processive than the CBH Cel7A (CBH1), from the same fungus. Here, we present the X-ray crystal structure of the catalytic domain of the CBH Cel6B, also called E3, from the soil bacterium Thermobifida fusca, both in its apo form and co-crystallized with cellobiose. The enzyme structure reveals that the Cel6B enzyme has a much longer substrate-binding site than its fungal GH6 counterparts. The tunnel is comparable in length to that of GH7 CBHs. In the ligand structure with cellobiose, the tunnel exit is completely closed by a 13-residue loop not present in fungal GH6 enzymes. The loop needs to be displaced to allow cellobiose product release for a processive action by the enzyme. When ligand is absent, seven of these residues are not visible in the electron density and the tunnel exit is open.


Asunto(s)
Actinomycetales/enzimología , Celulosa 1,4-beta-Celobiosidasa/química , Actinomycetales/química , Secuencia de Aminoácidos , Dominio Catalítico , Celobiosa/química , Celobiosa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Alineación de Secuencia
19.
PLoS One ; 8(9): e70562, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039705

RESUMEN

In an effort to characterise the whole transcriptome of the fungus Hypocrea jecorina, cDNA clones of this fungus were identified that encode for previously unknown proteins that are likely to function in biomass degradation. One of these newly identified proteins, found to be co-regulated with the major H. jecorina cellulases, is a protein that was denoted Cellulose induced protein 1 (Cip1). This protein consists of a glycoside hydrolase family 1 carbohydrate binding module connected via a linker region to a domain with yet unknown function. After cloning and expression of Cip1 in H. jecorina, the protein was purified and biochemically characterised with the aim of determining a potential enzymatic activity for the novel protein. No hydrolytic activity against any of the tested plant cell wall components was found. The proteolytic core domain of Cip1 was then crystallised, and the three-dimensional structure of this was determined to 1.5 Å resolution utilising sulphur single-wavelength anomalous dispersion phasing (sulphor-SAD). A calcium ion binding site was identified in a sequence conserved region of Cip1 and is also seen in other proteins with the same general fold as Cip1, such as many carbohydrate binding modules. The presence of this ion was found to have a structural role. The Cip1 structure was analysed and a structural homology search was performed to identify structurally related proteins. The two published structures with highest overall structural similarity to Cip1 found were two poly-lyases: CsGL, a glucuronan lyase from H. jecorina and vAL-1, an alginate lyase from the Chlorella virus. This indicates that Cip1 may be a lyase. However, initial trials did not detect significant lyase activity for Cip1. Cip1 is the first structure to be solved of the 23 currently known Cip1 sequential homologs (with a sequence identity cut-off of 25%), including both bacterial and fungal members.


Asunto(s)
Proteínas Fúngicas/química , Hypocrea/enzimología , Liasas/química , Secuencia de Aminoácidos , Calcio/química , Dominio Catalítico , Complejos de Coordinación/química , Cristalografía por Rayos X , Glicol de Etileno , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Desplegamiento Proteico
20.
PLoS One ; 7(7): e40854, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22859955

RESUMEN

Endo-N-acetyl-ß-D-glucosaminidases (ENGases) hydrolyze the glycosidic linkage between the two N-acetylglucosamine units that make up the chitobiose core of N-glycans. The endo-N-acetyl-ß-D-glucosaminidases classified into glycoside hydrolase family 18 are small, bacterial proteins with different substrate specificities. Recently two eukaryotic family 18 deglycosylating enzymes have been identified. Here, the expression, purification and the 1.3Å resolution structure of the ENGase (Endo T) from the mesophilic fungus Hypocrea jecorina (anamorph Trichoderma reesei) are reported. Although the mature protein is C-terminally processed with removal of a 46 amino acid peptide, the protein has a complete (ß/α)8 TIM-barrel topology. In the active site, the proton donor (E131) and the residue stabilizing the transition state (D129) in the substrate assisted catalysis mechanism are found in almost identical positions as in the bacterial GH18 ENGases: Endo H, Endo F1, Endo F3, and Endo BT. However, the loops defining the substrate-binding cleft vary greatly from the previously known ENGase structures, and the structures also differ in some of the α-helices forming the barrel. This could reflect the variation in substrate specificity between the five enzymes. This is the first three-dimensional structure of a eukaryotic endo-N-acetyl-ß-D-glucosaminidase from glycoside hydrolase family 18. A glycosylation analysis of the cellulases secreted by a Hypocrea jecorina Endo T knock-out strain shows the in vivo function of the protein. A homology search and phylogenetic analysis show that the two known enzymes and their homologues form a large but separate cluster in subgroup B of the fungal chitinases. Therefore the future use of a uniform nomenclature is proposed.


Asunto(s)
Celulasa/metabolismo , Proteínas Fúngicas/química , Hypocrea/enzimología , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Inactivación de Genes , Glicosilación , Hypocrea/genética , Hypocrea/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Proteoma/metabolismo , Homología Estructural de Proteína , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA