Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Eye Res ; 219: 109033, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35288107

RESUMEN

Photoreceptor cell transplantation into the mouse retina has been shown to result in the transfer of cytoplasmic material between donor and host photoreceptors. Recently it has been found that this inter-photoreceptor material transfer process is likely to be mediated by nanotube-like structures connecting donor and host photoreceptors. By leveraging cone-specific reporter mice and super-resolution microscopy we provide evidence for the transfer of cytoplasmic material also from endogenous cones to endogenous rod photoreceptors and the existence of nanotube-like cell-cell connections possibly mediating this process in the adult mouse retina, together with preliminary data indicating that horizontal material transfer may also occur in the human retina.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Células Fotorreceptoras Retinianas Bastones , Animales , Mamíferos , Ratones , Retina
2.
FASEB J ; 33(2): 1758-1770, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30156910

RESUMEN

A hallmark of proliferative retinopathies, such as retinopathy of prematurity (ROP), is a pathological neovascularization orchestrated by hypoxia and the resulting hypoxia-inducible factor (HIF)-dependent response. We studied the role of Hif2α in hematopoietic cells for pathological retina neovascularization in the murine model of ROP, the oxygen-induced retinopathy (OIR) model. Hematopoietic-specific deficiency of Hif2α ameliorated pathological neovascularization in the OIR model, which was accompanied by enhanced endothelial cell apoptosis. That latter finding was associated with up-regulation of the apoptosis-inducer FasL in Hif2α-deficient microglia. Consistently, pharmacological inhibition of the FasL reversed the reduced pathological neovascularization from hematopoietic-specific Hif2α deficiency. Our study found that the hematopoietic cell Hif2α contributes to pathological retina angiogenesis. Our findings not only provide novel insights regarding the complex interplay between immune cells and endothelial cells in hypoxia-driven retina neovascularization but also may have therapeutic implications for proliferative retinopathies.-Korovina, I., Neuwirth, A., Sprott, D., Weber, S., Sardar Pasha, S. P. B., Gercken, B., Breier, G., El-Armouche, A., Deussen, A., Karl, M. O., Wielockx, B., Chavakis, T., Klotzsche-von Ameln, A. Hematopoietic hypoxia-inducible factor 2α deficiency ameliorates pathological retinal neovascularization via modulation of endothelial cell apoptosis.


Asunto(s)
Apoptosis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Células de la Médula Ósea/metabolismo , Médula Ósea/metabolismo , Endotelio Vascular/patología , Neovascularización Patológica , Vasos Retinianos/patología , Proteína ADAM17/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Transformada , Modelos Animales de Enfermedad , Proteína Ligando Fas/metabolismo , Ratones , Ratones Noqueados , Microglía/metabolismo , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología
3.
Cytometry A ; 95(11): 1145-1157, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31107590

RESUMEN

Distinct cell-types within the retina are mainly specified by morphological and molecular parameters, however, physical properties are increasingly recognized as a valuable tool to characterize and distinguish cells in diverse tissues. High-throughput analysis of morpho-rheological features has recently been introduced using real-time deformability cytometry (RT-DC) providing new insights into the properties of different cell-types. Rod photoreceptors represent the main light sensing cells in the mouse retina that during development forms apically the densely packed outer nuclear layer. Currently, enrichment and isolation of photoreceptors from retinal primary tissue or pluripotent stem cell-derived organoids for analysis, molecular profiling, or transplantation is achieved using flow cytometry or magnetic activated cell sorting approaches. However, such purification methods require genetic modification or identification of cell surface binding antibody panels. Using primary retina and embryonic stem cell-derived retinal organoids, we characterized the inherent morpho-mechanical properties of mouse rod photoreceptors during development based on RT-DC. We demonstrate that rods become smaller and more compliant throughout development and that these features are suitable to distinguish rods within heterogenous retinal tissues. Hence, physical properties should be considered as additional factors that might affect photoreceptor differentiation and retinal development besides representing potential parameters for label-free sorting of photoreceptors. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Separación Celular/métodos , Células Madre Embrionarias/citología , Citometría de Flujo/métodos , Organoides/citología , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Diferenciación Celular/genética , Inmunofenotipificación , Ratones , Retina/citología
4.
Glia ; 65(5): 828-847, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28220544

RESUMEN

Reactive gliosis is an umbrella term for various glia functions in neurodegenerative diseases and upon injury. Specifically, Müller glia (MG) in some species readily regenerate retinal neurons to restore vision loss after insult, whereas mammalian MG respond by reactive gliosis-a heterogeneous response which frequently includes cell hypertrophy and proliferation. Limited regeneration has been stimulated in mammals, with a higher propensity in young MG, and in vitro compared to in vivo, but the underlying processes are unknown. To facilitate studies on the mechanisms regulating and limiting glia functions, we developed a strategy to purify glia and their progeny by fluorescence-activated cell sorting. Dual-transgenic nuclear reporter mice, which label neurons and glia with red and green fluorescent proteins, respectively, have enabled MG enrichment up to 93% purity. We applied this approach to MG in a mouse retina regeneration ex vivo assay. Combined cell size and cell cycle analysis indicates that most MG hypertrophy and a subpopulation proliferates which, over time, become even larger in cell size than the ones that do not proliferate. MG undergo timed differential genomic changes in genes controlling stemness and neurogenic competence; and glial markers are downregulated. Genes that are potentially required for, or associated with, regeneration and reactive gliosis are differentially regulated by retina explant culture time, epidermal growth factor stimulation, and animal age. Thus, MG enrichment facilitates cellular and molecular studies which, in combination with the mouse retina regeneration assay, provide an experimental approach for deciphering mechanisms that possibly regulate reactive gliosis and limit regeneration in mammals.


Asunto(s)
Diferenciación Celular/fisiología , Regeneración Nerviosa/fisiología , Neuroglía/citología , Retina/citología , Neuronas Retinianas/citología , Animales , Proliferación Celular/fisiología , Células Ependimogliales/fisiología , Ratones Transgénicos , Neurogénesis/fisiología , Células Madre/fisiología
5.
Glia ; 63(10): 1809-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25943952

RESUMEN

The mechanisms limiting neuronal regeneration in mammals and their relationship with reactive gliosis are unknown. Müller glia (MG), common to all vertebrate retinas, readily regenerate neuron loss in some species, but normally not in mammals. However, experimental stimulation of limited mammalian retina regeneration has been reported. Here, we use a mouse retina organ culture approach to investigate the MG responses at different mouse ages. We found that MG undergo defined spatio-temporal changes upon stimulation. In EGF-stimulated juvenile postmitotic retinas, most MG upregulate cell-cycle regulators (Mcm6, Pcna, Ki67, Ccnd1) within 48 h ex vivo; some also express the neurogenic factors Ascl1, Pax6, and Vsx2; up to 60% re-enter the cell cycle, some of which delaminate to divide mostly apically; and the majority cease to proliferate after stimulation. A subpopulation of MG progeny starts to express transcription factors (Ptf1a, Nr4a2) and neuronal (Calb1, Calb2, Rbfox3), but not glial, markers, indicating neurogenesis. BrdU-tracking, genetic lineage-tracing, and transgenic-reporter experiments suggest that MG reprogram to a neurogenic stage and proliferate; and that some MG progeny differentiate into neuronal-like cells, most likely amacrines, no photoreceptors; most others remain in a de-differentiated state. The mouse MG regeneration potential becomes restricted, dependent on the age of the animal, as observed by limited activation of the cell cycle and neurogenic factors. The stage-dependent analysis of mouse MG revealed similarities and differences when compared with MG-derived regeneration in fish and chicks. Therefore, the mouse retina ex vivo approach is a potential assay for understanding and overcoming the limitations of mammalian MG-derived neuronal regeneration. Postmitotic MG in mouse retina ex vivo can be stimulated to proliferate, express neurogenic factors, and generate progeny expressing neuronal or glial markers. This potential regenerative competence becomes limited with increasing mouse age.


Asunto(s)
Envejecimiento/fisiología , Células Ependimogliales/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Retina/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Bromodesoxiuridina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Ependimogliales/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Gliosis/patología , Técnicas In Vitro , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Factores de Tiempo , Factores de Transcripción/metabolismo
6.
Cell Tissue Res ; 353(2): 311-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23708526

RESUMEN

Stem cell research offers a wide variety of approaches for the advancement of our understanding of basic mechanisms of neurodegeneration and tissue regeneration and for the discovery and development of new therapeutic strategies to prevent and restore neuronal cell loss. Similar to most other regions of our central nervous system, degenerative diseases of the retina lead to the loss of neurons, which are not replaced. Recent work in animals has provided proof-of-concept evidence for the restoration of photoreceptor cells by cell transplantation and neuronal cell replacement by regeneration from endogenous cell sources. However, efficient therapeutic prevention of neuronal cell loss has not been achieved. Moreover, successful cell replacement of retinal neurons in humans, including that of ganglion cells, remains a major challenge. Future successes in the discovery and translation of neuroprotective drug and gene therapies and of cell-based regenerative therapies will depend on a better understanding of the underlying disease pathomechanisms. Existing stem cell and cell-reprogramming technologies offer the potential to generate human retina cells, to develop specific human-cell-based retina disease models, and to open up novel therapeutic strategies. Further, we might glean substantial knowledge from species that can or cannot regenerate their neuronal retina, in the search for new therapeutic approaches. Thus, stem cell research will pave the way toward clinical translation. In this review, I address some of the major possibilities presently on offer and speculate about the power of stem cell research to gain further insights into the pathomechanisms of retinal neurodegeneration (with special emphasis on glaucoma) and to advance our therapeutic options.


Asunto(s)
Glaucoma/patología , Glaucoma/terapia , Neuronas/patología , Investigación con Células Madre , Trasplante de Células Madre , Animales , Humanos , Enfermedades Neurodegenerativas/terapia , Retina/patología
7.
Front Cell Neurosci ; 17: 1106287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213216

RESUMEN

Neurodegenerative diseases remain incompletely understood and therapies are needed. Stem cell-derived organoid models facilitate fundamental and translational medicine research. However, to which extent differential neuronal and glial pathologic processes can be reproduced in current systems is still unclear. Here, we tested 16 different chemical, physical, and cell functional manipulations in mouse retina organoids to further explore this. Some of the treatments induce differential phenotypes, indicating that organoids are competent to reproduce distinct pathologic processes. Notably, mouse retina organoids even reproduce a complex pathology phenotype with combined photoreceptor neurodegeneration and glial pathologies upon combined (not single) application of HBEGF and TNF, two factors previously associated with neurodegenerative diseases. Pharmacological inhibitors for MAPK signaling completely prevent photoreceptor and glial pathologies, while inhibitors for Rho/ROCK, NFkB, and CDK4 differentially affect them. In conclusion, mouse retina organoids facilitate reproduction of distinct and complex pathologies, mechanistic access, insights for further organoid optimization, and modeling of differential phenotypes for future applications in fundamental and translational medicine research.

8.
Front Cell Neurosci ; 17: 1166641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868194

RESUMEN

The possible applications for human retinal organoids (HROs) derived from human induced pluripotent stem cells (hiPSC) rely on the robustness and transferability of the methodology for their generation. Standardized strategies and parameters to effectively assess, compare, and optimize organoid protocols are starting to be established, but are not yet complete. To advance this, we explored the efficiency and reliability of a differentiation method, called CYST protocol, that facilitates retina generation by forming neuroepithelial cysts from hiPSC clusters. Here, we tested seven different hiPSC lines which reproducibly generated HROs. Histological and ultrastructural analyses indicate that HRO differentiation and maturation are regulated. The different hiPSC lines appeared to be a larger source of variance than experimental rounds. Although previous reports have shown that HROs in several other protocols contain a rather low number of cones, HROs from the CYST protocol are consistently richer in cones and with a comparable ratio of cones, rods, and Müller glia. To provide further insight into HRO cell composition, we studied single cell RNA sequencing data and applied CaSTLe, a transfer learning approach. Additionally, we devised a potential strategy to systematically evaluate different organoid protocols side-by-side through parallel differentiation from the same hiPSC batches: In an explorative study, the CYST protocol was compared to a conceptually different protocol based on the formation of cell aggregates from single hiPSCs. Comparing four hiPSC lines showed that both protocols reproduced key characteristics of retinal epithelial structure and cell composition, but the CYST protocol provided a higher HRO yield. So far, our data suggest that CYST-derived HROs remained stable up to at least day 200, while single hiPSC-derived HROs showed spontaneous pathologic changes by day 200. Overall, our data provide insights into the efficiency, reproducibility, and stability of the CYST protocol for generating HROs, which will be useful for further optimizing organoid systems, as well as for basic and translational research applications.

9.
Glia ; 60(10): 1579-89, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22777914

RESUMEN

Müller glia are normally mitotically quiescent cells, but in certain pathological states they can re-enter the mitotic cell cycle. While several cell cycle regulators have been shown to be important in this process, a role for the tumor suppressor, p53, has not been demonstrated. Here, we investigated a role for p53 in limiting the ability of Müller glia to proliferate in the mature mouse retina. Our data demonstrate that Müller glia undergo a developmental restriction in their potential to proliferate. Retinal explants or dissociated cultures treated with EGF become mitotically quiescent by the end of the second postnatal week. In contrast, Müller glia from adult trp53-/+ or trp53-/- mice displayed a greater ability to proliferate in response to EGF stimulation in vitro. The enhanced proliferative ability of trp53 deficient mice correlates with a decreased expression of the mitotic inhibitor Cdkn1a/p21(cip) and an increase in c-myc, a transcription factor that promotes cell cycle progression. These data show that p53 plays an essential role in limiting the potential of Müller glia to re-enter the mitotic cycle as the retina matures during postnatal development.


Asunto(s)
Proliferación Celular , Regulación del Desarrollo de la Expresión Génica/genética , Neuroglía/fisiología , Retina/citología , Retina/crecimiento & desarrollo , Proteína p53 Supresora de Tumor/metabolismo , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/efectos de los fármacos , Técnicas de Cultivo de Órganos , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Factores de Tiempo , Proteína p53 Supresora de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
10.
J Clin Invest ; 132(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35482419

RESUMEN

Once human photoreceptors die, they do not regenerate, thus, photoreceptor transplantation has emerged as a potential treatment approach for blinding diseases. Improvements in transplant organization, donor cell maturation, and synaptic connectivity to the host will be critical in advancing this technology for use in clinical practice. Unlike the unstructured grafts of prior cell-suspension transplantations into end-stage degeneration models, we describe the extensive incorporation of induced pluripotent stem cell (iPSC) retinal organoid-derived human photoreceptors into mice with cone dysfunction. This incorporative phenotype was validated in both cone-only as well as pan-photoreceptor transplantations. Rather than forming a glial barrier, Müller cells extended throughout the graft, even forming a series of adherens junctions between mouse and human cells, reminiscent of an outer limiting membrane. Donor-host interaction appeared to promote polarization as well as the development of morphological features critical for light detection, namely the formation of inner and well-stacked outer segments oriented toward the retinal pigment epithelium. Putative synapse formation and graft function were evident at both structural and electrophysiological levels. Overall, these results show that human photoreceptors interacted readily with a partially degenerated retina. Moreover, incorporation into the host retina appeared to be beneficial to graft maturation, polarization, and function.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Animales , Células Ependimogliales , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos , Degeneración Retiniana/metabolismo , Degeneración Retiniana/terapia
11.
Nat Commun ; 13(1): 6183, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261438

RESUMEN

Human organoids could facilitate research of complex and currently incurable neuropathologies, such as age-related macular degeneration (AMD) which causes blindness. Here, we establish a human retinal organoid system reproducing several parameters of the human retina, including some within the macula, to model a complex combination of photoreceptor and glial pathologies. We show that combined application of TNF and HBEGF, factors associated with neuropathologies, is sufficient to induce photoreceptor degeneration, glial pathologies, dyslamination, and scar formation: These develop simultaneously and progressively as one complex phenotype. Histologic, transcriptome, live-imaging, and mechanistic studies reveal a previously unknown pathomechanism: Photoreceptor neurodegeneration via cell extrusion. This could be relevant for aging, AMD, and some inherited diseases. Pharmacological inhibitors of the mechanosensor PIEZO1, MAPK, and actomyosin each avert pathogenesis; a PIEZO1 activator induces photoreceptor extrusion. Our model offers mechanistic insights, hypotheses for neuropathologies, and it could be used to develop therapies to prevent vision loss or to regenerate the retina in patients suffering from AMD and other diseases.


Asunto(s)
Degeneración Macular , Organoides , Humanos , Actomiosina , Factor de Crecimiento Similar a EGF de Unión a Heparina , Canales Iónicos , Degeneración Macular/patología , Organoides/patología , Células Fotorreceptoras , Retina/patología , Factores de Necrosis Tumoral
12.
Proc Natl Acad Sci U S A ; 105(49): 19508-13, 2008 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-19033471

RESUMEN

Müller glia can serve as a source of new neurons after retinal damage in both fish and birds. Investigations of regeneration in the mammalian retina in vitro have provided some evidence that Müller glia can proliferate after retinal damage and generate new rods; however, the evidence that this occurs in vivo is not conclusive. We have investigated whether Müller glia have the potential to generate neurons in the mouse retina in vivo by eliminating ganglion and amacrine cells with intraocular NMDA injections and stimulating Müller glial to re-enter the mitotic cycle by treatment with specific growth factors. The proliferating Müller glia dedifferentiate and a subset of these cells differentiated into amacrine cells, as defined by the expression of amacrine cell-specific markers Calretinin, NeuN, Prox1, and GAD67-GFP. These results show for the first time that the mammalian retina has the potential to regenerate inner retinal neurons in vivo.


Asunto(s)
Regeneración Nerviosa/fisiología , Neuroglía/citología , Neuronas/citología , Retina/citología , Retina/fisiología , Células Amacrinas/citología , Células Amacrinas/metabolismo , Animales , Biomarcadores/metabolismo , Calbindina 2 , Diferenciación Celular/fisiología , División Celular/fisiología , Linaje de la Célula/fisiología , Proteínas de Unión al ADN , Desnervación , Agonistas de Aminoácidos Excitadores/toxicidad , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Transgénicos , N-Metilaspartato/toxicidad , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Proteínas Supresoras de Tumor/metabolismo
13.
Hum Gene Ther ; 32(13-14): 694-706, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33752467

RESUMEN

The most widely used vectors for gene delivery in the retina are recombinant adeno-associated virus (rAAV) vectors. They have proven to be safe and effective in retinal gene therapy studies aimed to treat inherited retinal dystrophies, although with various limitations in transduction efficiency. Novel variants with modified capsid sequences have been engineered to improve transduction and overcome limitations of naturally occurring variants. Although preclinical evaluation of rAAV vectors based on such novel capsids is mostly done in animal models, the use of human induced pluripotent stem cell (hiPSC)-derived organoids offers an accessible and abundant human testing platform for rAAV evaluation. In this study, we tested the novel capsids, AAV9.GL and AAV9.NN, for their tropism and transduction efficiency in hiPSC-derived human retinal organoids (HROs) with all major neuronal and glial cell types in a laminated structure. These variants are based on the AAV9 capsid and were engineered to display specific surface-exposed peptide sequences, previously shown to improve the retinal transduction properties in the context of AAV2. To this end, HROs were transduced with increasing concentrations of rAAV9, rAAV9.GL, or rAAV9.NN carrying a self-complementary genome with a cytomegalovirus-enhanced green fluorescent protein (eGFP) cassette and were monitored for eGFP expression. The rAAV vectors transduced HROs in a dose-dependent manner, with rAAV9.NN achieving the highest efficiency and fastest onset kinetics, leading to detectable eGFP signals in photoreceptors, some interneurons, and Müller glia already at 2 days post-transduction. The potency-enhancing effect of the NN peptide insert was replicated when using the corresponding AAV2-based version (rAAV2.NN). Taken together, we report the application of an HRO system for screening novel AAV vectors and introduce novel vector candidates with enhanced transduction efficiency for human retinal cells.


Asunto(s)
Dependovirus , Células Madre Pluripotentes Inducidas , Animales , Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Organoides , Retina , Transducción Genética
14.
Front Cell Dev Biol ; 9: 645704, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996806

RESUMEN

Using retinal organoid systems, organ-like 3D tissues, relies implicitly on their robustness. However, essential key parameters, particularly retinal growth and longer-term culture, are still insufficiently defined. Here, we hypothesize that a previously optimized protocol for high yield of evenly-sized mouse retinal organoids with low variability facilitates assessment of such parameters. We demonstrate that these organoids reliably complete retinogenesis, and can be maintained at least up to 60 days in culture. During this time, the organoids continue to mature on a molecular and (ultra)structural level: They develop photoreceptor outer segments and synapses, transiently maintain its cell composition for about 5-10 days after completing retinogenesis, and subsequently develop pathologic changes - mainly of the inner but also outer retina and reactive gliosis. To test whether this organoid system provides experimental access to the retina during and upon completion of development, we defined and stimulated organoid growth by activating sonic hedgehog signaling, which in patients and mice in vivo with a congenital defect leads to enlarged eyes. Here, a sonic hedgehog signaling activator increased retinal epithelia length in the organoid system when applied during but not after completion of development. This experimentally supports organoid maturation, stability, and experimental reproducibility in this organoid system, and provides a potential enlarged retina pathology model, as well as a protocol for producing larger organoids. Together, our study advances the understanding of retinal growth, maturation, and maintenance, and further optimizes the organoid system for future utilization.

15.
Stem Cell Reports ; 15(6): 1347-1361, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33242397

RESUMEN

Phagocytosis is a key function in various cells throughout the body. A deficiency in photoreceptor outer segment (POS) phagocytosis by the retinal pigment epithelium (RPE) causes vision loss in inherited retinal diseases and possibly age-related macular degeneration. To date, there are no effective therapies available aiming at recovering the lost phagocytosis function. Here, we developed a high-throughput screening assay based on RPE derived from human embryonic stem cells (hRPE) to reveal enhancers of POS phagocytosis. One of the hits, ramoplanin (RM), reproducibly enhanced POS phagocytosis and ensheathment in hRPE, and enhanced the expression of proteins known to regulate membrane dynamics and ensheathment in other cell systems. Additionally, RM rescued POS internalization defect in Mer receptor tyrosine kinase (MERTK) mutant hRPE, derived from retinitis pigmentosa patient induced pluripotent stem cells. Our platform, including a primary phenotypic screening phagocytosis assay together with orthogonal assays, establishes a basis for RPE-based therapy discovery aiming at a broad patient spectrum.


Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Fagocitosis , Células Fotorreceptoras de Vertebrados/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Línea Celular , Células Madre Embrionarias Humanas/citología , Humanos , Células Fotorreceptoras de Vertebrados/citología , Epitelio Pigmentado de la Retina/citología
16.
Stem Cell Reports ; 14(3): 374-389, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160519

RESUMEN

Maintenance of a healthy photoreceptor-retinal pigment epithelium (RPE) interface is essential for vision. At the center of this interface, apical membrane protrusions stemming from the RPE ensheath photoreceptor outer segments (POS), and are possibly involved in the recycling of POS through phagocytosis. The molecules that regulate POS ensheathment and its relationship to phagocytosis remain to be deciphered. By means of ultrastructural analysis, we revealed that Mer receptor tyrosine kinase (MERTK) ligands, GAS6 and PROS1, rather than αVß5 integrin receptor ligands, triggered POS ensheathment by human embryonic stem cell (hESC)-derived RPE. Furthermore, we found that ensheathment is required for POS fragmentation before internalization. Consistently, POS ensheathment, fragmentation, and internalization were abolished in MERTK mutant RPE, and rescue of MERTK expression in retinitis pigmentosa (RP38) patient RPE counteracted these defects. Our results suggest that loss of ensheathment due to MERTK dysfunction might contribute to vision impairment in RP38 patients.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/enzimología , Epitelio Pigmentado de la Retina/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Línea Celular , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/ultraestructura , Humanos , Ligandos , Mutación/genética , Fagocitosis , Receptores de Vitronectina/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/ultraestructura , Epitelio Pigmentado de la Retina/ultraestructura , Tirosina Quinasa c-Mer/genética
17.
Cell Signal ; 20(6): 1159-68, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18395422

RESUMEN

Mutation or loss of MerTK as well as deficiency of alphavbeta5-integrins, gives rise to retinal-degeneration due to inefficient phagocytosis of photoreceptor outer-segment fragments by the retinal pigment epithelium (RPE). This study shows that Gas6 expressed endogenously by human RPE promotes phagocytosis. The RPE expresses Gas6 more highly in vivo and in serum-reduced conditions in vitro than in high-serum conditions, suggesting a negative-feedback control. An antibody-blockage approach revealed that Gas6-expressing RPE phagocytizes photoreceptor outer-segment fragments due to stimulation of MerTK by endogenous Gas6 in vitro. MerTK- and Gas6-antibodies reduced phagocytosis. Blocking L-type Ca(2+)-channels with nifedipine inhibited MerTK dependent phagocytosis in vitro. Application of integrin inhibitory, soluble, RGD-containing peptides or soluble vitronectin reduced L-type Ca(2+)-channel currents in RPE. Herbimycin A, which reduces phosphorylation of integrin receptor-associated proteins and decreases L-type Ca(2+)-channel currents in RPE, eliminates the inhibiting vitronectin effect and abolishes phagocytosis. Thus, Gas6-promoted phagocytosis was inhibited by L-type Ca(2+)-channel blockage, which in turn may be activated by integrin receptor stimulation. These results suggest that L-type Ca(2+)-channels could be regulated downstream of both MerTK and alphavbeta5-integrin, indicating that the binding and uptake mechanisms of phagocytosis are part of a converging pathway.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Fagocitosis , Epitelio Pigmentado Ocular/metabolismo , Anticuerpos/farmacología , Benzoquinonas/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Humanos , Integrina alfaV/metabolismo , Péptidos y Proteínas de Señalización Intercelular/análisis , Péptidos y Proteínas de Señalización Intercelular/inmunología , Lactamas Macrocíclicas/farmacología , Ligandos , Nifedipino/farmacología , Fagocitosis/efectos de los fármacos , Epitelio Pigmentado Ocular/efectos de los fármacos , Epitelio Pigmentado Ocular/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/inmunología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Rifabutina/análogos & derivados , Tirosina Quinasa c-Mer
18.
Methods Mol Biol ; 1834: 119-141, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30324441

RESUMEN

The introduction of stem cell-based technologies for the derivation of three-dimensional retinal tissues, the so-called retinal organoids, offers many new possibilities for vision research: Organoids facilitate studies on retinal development and in vitro retinal disease modeling, as well as being valuable for drug testing. Further, retinal organoids also provide an unlimited cell source for cell replacement therapies. Here, we describe our protocol for efficiently differentiating large, stratified retinal organoids from mouse embryonic stem cells: unbiased manual dissection of the developing retinal organoid at an early stage into three evenly sized neuroepithelial portions (trisection step) doubles the yield of high-quality organoids. We also describe some useful applications of the protocol, e.g., generation of rod- or cone-enriched retinal organoids, AAV transfection, and cell birth dating. In addition, we provide details of how to process retinal organoids for single organoid gene expression analysis, immunohistochemistry, and electron microscopy.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias de Ratones/citología , Organoides , Retina , Animales , Técnicas de Cultivo de Célula , Criopreservación , Técnica del Anticuerpo Fluorescente , Vectores Genéticos/genética , Inmunohistoquímica , Ratones , Microscopía Fluorescente , Células Madre Embrionarias de Ratones/metabolismo , Técnicas de Cultivo de Órganos , Organoides/citología , Organoides/metabolismo , Retina/citología , Retina/metabolismo , Retina/ultraestructura , Transducción Genética
19.
Prog Retin Eye Res ; 26(3): 263-301, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17258931

RESUMEN

In close interaction with photoreceptors, the retinal pigment epithelium (RPE) plays an essential role for visual function. The analysis of RPE functions, specifically ion channel functions, provides a basis to understand many degenerative diseases of the retina. The invention of the patch-clamp technique significantly improved the knowledge of ion channel structure and function, which enabled a new understanding of cell physiology and patho-physiology of many diseases. In this review, ion channels identified in the RPE will be described in terms of their specific functional role in RPE physiology. The RPE expresses voltage- and ligand-gated K(+), Cl(-), and Ca(2+)-conducting channels. K(+) and Cl(-) channels are involved in transepithelial ion transport and volume regulation. Voltage-dependent Ca(2+) channels act as regulators of secretory activity, and ligand-gated cation channels contribute to RPE function by providing driving forces for ion transport or by influencing intracellular Ca(2+) homoeostasis. Collectively, activity of these ion channels determines the physiology of the RPE and its interaction with photoreceptors. Furthermore, changes in ion channel function, such as mutations in ion channel genes or a changed regulation of ion channel activity, have been shown to lead to degenerative diseases of the retina. Increasing knowledge about the properties of RPE ion channels has not only provided a new understanding of RPE function but has also provided greater understanding of RPE function in health and disease.


Asunto(s)
Canales Iónicos/metabolismo , Epitelio Pigmentado Ocular/metabolismo , Animales , Humanos , Transporte Iónico/fisiología , Potenciales de la Membrana , Técnicas de Placa-Clamp , Epitelio Pigmentado Ocular/citología
20.
J Gen Physiol ; 127(5): 577-89, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16636205

RESUMEN

Mutations in VMD2, encoding bestrophin (best-1), cause Best vitelliform macular dystrophy (BMD), adult-onset vitelliform macular dystrophy (AVMD), and autosomal dominant vitreoretinochoroidopathy (ADVIRC). BMD is distinguished from AVMD by a diminished electrooculogram light peak (LP) in the absence of changes in the flash electroretinogram. Although the LP is thought to be generated by best-1, we find enhanced LP luminance responsiveness with normal amplitude in Vmd2-/- mice and no differences in cellular Cl- currents in comparison to Vmd2+/+ littermates. The putative Ca2+ sensitivity of best-1, and our recent observation that best-1 alters the kinetics of voltage-dependent Ca2+ channels (VDCC), led us to examine the role of VDCCs in the LP. Nimodipine diminished the LP, leading us to survey VDCC beta-subunit mutant mice. Lethargic mice, which harbor a loss of function mutation in the beta4 subunit of VDCCs, exhibited a significant shift in LP luminance response, establishing a role for Ca2+ in LP generation. When stimulated with ATP, which increases [Ca++]I, retinal pigment epithelial cells derived from Vmd2-/- mice exhibited a fivefold greater response than Vmd2+/+ littermates, indicating that best-1 can suppress the rise in [Ca2+]I associated with the LP. We conclude that VDCCs regulated by a beta4 subunit are required to generate the LP and that best-1 antagonizes the LP luminance response potentially via its ability to modulate VDCC function. Furthermore, we suggest that the loss of vision associated with BMD is not caused by the same pathologic process as the diminished LP, but rather is caused by as yet unidentified effects of best-1 on other cellular processes.


Asunto(s)
Canales de Calcio/efectos de los fármacos , Canales de Calcio/fisiología , Electrorretinografía/métodos , Proteínas del Ojo/fisiología , Luz , Adenosina Trifosfato/farmacología , Animales , Bestrofinas , Calcio/análisis , Bloqueadores de los Canales de Calcio/farmacología , Canales de Cloruro/fisiología , Electrofisiología , Proteínas del Ojo/genética , Inmunohistoquímica , Canales Iónicos , Ratones , Ratones Mutantes , Mutación , Nimodipina/farmacología , Técnicas de Placa-Clamp , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA