Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell ; 159(1): 11-12, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25259914

RESUMEN

Telomere clustering is required for the homologous recombination events that maintain chromosome ends in cells relying on alternative lengthening of telomeres (ALT). New data demonstrate that damage signaling at telomeres, a likely step in activating maintenance mechanisms, induces directional movement and synapsis driven by the machinery responsible for recombination in meiosis.


Asunto(s)
Emparejamiento Cromosómico , Recombinación Genética , Telómero/metabolismo , Humanos
2.
Nature ; 614(7949): 767-773, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755096

RESUMEN

Cancers arise through the accumulation of genetic and epigenetic alterations that enable cells to evade telomere-based proliferative barriers and achieve immortality. One such barrier is replicative crisis-an autophagy-dependent program that eliminates checkpoint-deficient cells with unstable telomeres and other cancer-relevant chromosomal aberrations1,2. However, little is known about the molecular events that regulate the onset of this important tumour-suppressive barrier. Here we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as a regulator of the crisis program. A crisis-associated isoform of ZBP1 is induced by the cGAS-STING DNA-sensing pathway, but reaches full activation only when associated with telomeric-repeat-containing RNA (TERRA) transcripts that are synthesized from dysfunctional telomeres. TERRA-bound ZBP1 oligomerizes into filaments on the outer mitochondrial membrane of a subset of mitochondria, where it activates the innate immune adapter protein mitochondrial antiviral-signalling protein (MAVS). We propose that these oligomerization properties of ZBP1 serve as a signal amplification mechanism, where few TERRA-ZBP1 interactions are sufficient to launch a detrimental MAVS-dependent interferon response. Our study reveals a mechanism for telomere-mediated tumour suppression, whereby dysfunctional telomeres activate innate immune responses through mitochondrial TERRA-ZBP1 complexes to eliminate cells destined for neoplastic transformation.


Asunto(s)
Replicación del ADN , Mitocondrias , Transducción de Señal , Telómero , Humanos , ADN/biosíntesis , ADN/genética , ADN/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/patología , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Telómero/genética , Telómero/metabolismo , Interferones , Inmunidad Innata , Autofagia
3.
Nature ; 565(7741): 659-663, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30675059

RESUMEN

Replicative crisis is a senescence-independent process that acts as a final barrier against oncogenic transformation by eliminating pre-cancerous cells with disrupted cell cycle checkpoints1. It functions as a potent tumour suppressor and culminates in extensive cell death. Cells rarely evade elimination and evolve towards malignancy, but the mechanisms that underlie cell death in crisis are not well understood. Here we show that macroautophagy has a dominant role in the death of fibroblasts and epithelial cells during crisis. Activation of autophagy is critical for cell death, as its suppression promoted bypass of crisis, continued proliferation and accumulation of genome instability. Telomere dysfunction specifically triggers autophagy, implicating a telomere-driven autophagy pathway that is not induced by intrachromosomal breaks. Telomeric DNA damage generates cytosolic DNA species with fragile nuclear envelopes that undergo spontaneous disruption. The cytosolic chromatin fragments activate the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway and engage the autophagy machinery. Our data suggest that autophagy is an integral component of the tumour suppressive crisis mechanism and that loss of autophagy function is required for the initiation of cancer.


Asunto(s)
Autofagia , Carcinogénesis/genética , Carcinogénesis/patología , Proliferación Celular , Inestabilidad Cromosómica , Autofagia/genética , Puntos de Control del Ciclo Celular , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Cromatina/patología , Inestabilidad Cromosómica/genética , Daño del ADN/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Proteínas de la Membrana/metabolismo , Membrana Nuclear/patología , Nucleotidiltransferasas/metabolismo , Telómero/genética , Telómero/patología
4.
J Biol Chem ; 299(5): 104665, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37003504

RESUMEN

Telomere length maintenance is crucial to cancer cell immortality. Up to 15% of cancers utilize a telomerase-independent, recombination-based mechanism termed alternative lengthening of telomeres (ALT). Currently, the primary ALT biomarker is the C-circle, a type of circular DNA with extrachromosomal telomere repeats (cECTRs). How C-circles form is not well characterized. We investigated C-circle formation in the human cen3tel cell line, a long-telomere, telomerase+ (LTT+) cell line with progressively hyper-elongated telomeres (up to ∼100 kb). cECTR signal was observed in 2D gels and C-circle assays but not t-circle assays, which also detect circular DNA with extrachromosomal telomere repeats. Telomerase activity and C-circle signal were not separable in the analysis of clonal populations, consistent with C-circle production occurring within telomerase+ cells. We observed similar cECTR results in two other LTT+ cell lines, HeLa1.3 (∼23 kb telomeres) and HeLaE1 (∼50 kb telomeres). In LTT+ cells, telomerase activity did not directly impact C-circle signal; instead, C-circle signal correlated with telomere length. LTT+ cell lines were less sensitive to hydroxyurea than ALT+ cell lines, suggesting that ALT status is a stronger contributor to replication stress levels than telomere length. Additionally, the DNA repair-associated protein FANCM did not suppress C-circles in LTT+ cells as it does in ALT+ cells. Thus, C-circle formation may be driven by telomere length, independently of telomerase and replication stress, highlighting limitations of C-circles as a stand-alone ALT biomarker.


Asunto(s)
ADN Circular , Telomerasa , Telómero , Humanos , ADN Helicasas/metabolismo , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero , Línea Celular , Células HeLa , Replicación del ADN , Hidroxiurea , Reparación del ADN
5.
Cell ; 138(1): 90-103, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19596237

RESUMEN

Telomeres protect chromosome ends through the interaction of telomeric repeats with shelterin, a protein complex that represses DNA damage signaling and DNA repair reactions. The telomeric repeats are maintained by telomerase, which solves the end replication problem. We report that the TTAGGG repeat arrays of mammalian telomeres pose a challenge to the DNA replication machinery, giving rise to replication-dependent defects that resemble those of aphidicolin-induced common fragile sites. Gene deletion experiments showed that efficient duplication of telomeres requires the shelterin component TRF1. Without TRF1, telomeres activate the ATR kinase in S phase and show a fragile-site phenotype in metaphase. Single-molecule analysis of replicating telomeres showed that TRF1 promotes efficient replication of TTAGGG repeats and prevents fork stalling. Two helicases implicated in the removal of G4 DNA structures, BLM and RTEL1, were required to repress the fragile-telomere phenotype. These results identify a second telomere replication problem that is solved by the shelterin component TRF1.


Asunto(s)
Sitios Frágiles del Cromosoma , Replicación del ADN , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Afidicolina , Cromosomas de los Mamíferos/metabolismo , Humanos , Metafase , Ratones , Proteína 1 de Unión a Repeticiones Teloméricas/genética
6.
Cell ; 132(5): 745-57, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18329362

RESUMEN

Single-strand extensions of the G strand of telomeres are known to be critical for chromosome-end protection and length regulation. Here, we report that in C. elegans, chromosome termini possess 3' G-strand overhangs as well as 5' C-strand overhangs. C tails are as abundant as G tails and are generated by a well-regulated process. These two classes of overhangs are bound by two single-stranded DNA binding proteins, CeOB1 and CeOB2, which exhibit specificity for G-rich or C-rich telomeric DNA. Strains of worms deleted for CeOB1 have elongated telomeres as well as extended G tails, whereas CeOB2 deficiency leads to telomere-length heterogeneity. Both CeOB1 and CeOB2 contain OB (oligo-saccharide/oligo-nucleotide binding) folds, which exhibit structural similarity to the second and first OB folds of the mammalian telomere binding protein hPOT1, respectively. Our results suggest that C. elegans telomere homeostasis relies on a novel mechanism that involves 5' and 3' single-stranded termini.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas de Unión al ADN/metabolismo , Telómero/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Línea Celular , ADN de Helmintos/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Embrión no Mamífero/metabolismo , Humanos , Homología Estructural de Proteína , Telómero/química , Telómero/ultraestructura
7.
Nature ; 549(7673): 548-552, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28959974

RESUMEN

Classical non-homologous end joining (cNHEJ) and homologous recombination compete for the repair of double-stranded DNA breaks during the cell cycle. Homologous recombination is inhibited during the G1 phase of the cell cycle, but both pathways are active in the S and G2 phases. However, it is unclear why cNHEJ does not always outcompete homologous recombination during the S and G2 phases. Here we show that CYREN (cell cycle regulator of NHEJ) is a cell-cycle-specific inhibitor of cNHEJ. Suppression of CYREN allows cNHEJ to occur at telomeres and intrachromosomal breaks during the S and G2 phases, and cells lacking CYREN accumulate chromosomal aberrations upon damage induction, specifically outside the G1 phase. CYREN acts by binding to the Ku70/80 heterodimer and preferentially inhibits cNHEJ at breaks with overhangs by protecting them. We therefore propose that CYREN is a direct cell-cycle-dependent inhibitor of cNHEJ that promotes error-free repair by homologous recombination during cell cycle phases when sister chromatids are present.


Asunto(s)
Reparación del ADN por Unión de Extremidades/fisiología , Fase G2 , Reparación del ADN por Recombinación/fisiología , Fase S , Línea Celular , Cromátides/genética , Cromátides/metabolismo , Aberraciones Cromosómicas , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Fase G1 , Humanos , Autoantígeno Ku/química , Autoantígeno Ku/metabolismo , Unión Proteica , Reparación del ADN por Recombinación/genética , Telómero/genética , Telómero/metabolismo
8.
Nat Rev Mol Cell Biol ; 11(3): 171-81, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20125188

RESUMEN

The natural ends of linear chromosomes require unique genetic and structural adaptations to facilitate the protection of genetic material. This is achieved by the sequestration of the telomeric sequence into a protective nucleoprotein cap that masks the ends from constitutive exposure to the DNA damage response machinery. When telomeres are unmasked, genome instability arises. Balancing capping requirements with telomere replication and the enzymatic processing steps that are obligatory for telomere function is a complex problem. Telomeric proteins and their interacting factors create an environment at chromosome ends that inhibits DNA repair; however, the repair machinery is essential for proper telomere function.


Asunto(s)
Inestabilidad Genómica , Secuencias Repetitivas de Ácidos Nucleicos/genética , Telomerasa/metabolismo , Telómero/genética , Secuencia de Bases , Daño del ADN , Reparación del ADN , Humanos , Modelos Biológicos , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo
9.
Genes Dev ; 28(17): 1857-8, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25184673

RESUMEN

The telomeric complex has been analyzed in detail for its role in regulating telomere protection and telomere length. Now, modern genome-editing techniques in human embryonic stem cells reveal TPP1 as the essential recruitment factor for telomerase, with additional functions in telomerase activation and definition of telomere length homeostasis.


Asunto(s)
Telomerasa/metabolismo , Homeostasis del Telómero/genética , Telómero/enzimología , Humanos , Complejo Shelterina , Proteínas de Unión a Telómeros
10.
Nature ; 522(7557): 492-6, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26108857

RESUMEN

Tumour formation is blocked by two barriers: replicative senescence and crisis. Senescence is triggered by short telomeres and is bypassed by disruption of tumour-suppressive pathways. After senescence bypass, cells undergo crisis, during which almost all of the cells in the population die. Cells that escape crisis harbour unstable genomes and other parameters of transformation. The mechanism of cell death during crisis remains unexplained. Here we show that human cells in crisis undergo spontaneous mitotic arrest, resulting in death during mitosis or in the following cell cycle. This phenotype is induced by loss of p53 function, and is suppressed by telomerase overexpression. Telomere fusions triggered mitotic arrest in p53-compromised non-crisis cells, indicating that such fusions are the underlying cause of cell death. Exacerbation of mitotic telomere deprotection by partial TRF2 (also known as TERF2) knockdown increased the ratio of cells that died during mitotic arrest and sensitized cancer cells to mitotic poisons. We propose a crisis pathway wherein chromosome fusions induce mitotic arrest, resulting in mitotic telomere deprotection and cell death, thereby eliminating precancerous cells from the population.


Asunto(s)
Puntos de Control del Ciclo Celular , Muerte Celular , Aberraciones Cromosómicas , Mitosis , Neoplasias/patología , Telómero/metabolismo , Puntos de Control del Ciclo Celular/genética , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular , Senescencia Celular , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Daño del ADN , Fusión Génica/genética , Inestabilidad Genómica , Humanos , Mitosis/efectos de los fármacos , Mitosis/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/deficiencia , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
Mol Cell ; 51(2): 141-55, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23850488

RESUMEN

Loss of chromosome end protection through telomere erosion is a hallmark of aging and senescence. Here we developed an experimental system that mimics physiological telomere deprotection in human cells and discovered that the telomere deprotection response is functionally distinct from the genomic DNA damage response. We found that, unlike genomic breaks, deprotected telomeres that are recognized as DNA damage but remain in the fusion-resistant intermediate state activate differential ataxia telangiectasia mutated (ATM) signaling where CHK2 is not phosphorylated. Also unlike genomic breaks, we found that deprotected telomeres do not contribute to the G2/M checkpoint and are instead passed through cell division to induce p53-dependent G1 arrest in the daughter cells. Telomere deprotection is therefore an epigenetic signal passed between cell generations to ensure that replication-associated telomere-dependent growth arrest occurs in stable diploid G1 phase cells before genome instability can occur.


Asunto(s)
División Celular/fisiología , Senescencia Celular/fisiología , Daño del ADN/genética , Replicación del ADN , Fase G2/fisiología , Genoma Humano , Telómero/fisiología , Western Blotting , Puntos de Control del Ciclo Celular , Proliferación Celular , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Mitosis/fisiología , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
12.
Mol Cell ; 42(2): 224-36, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21504833

RESUMEN

Recent evidence for 5'-cytosine (C)-rich overhangs at the telomeres of the nematode Caenorhabditis elegans provided the impetus to re-examine the end structure of mammalian telomeres. Two-dimensional (2D) gel electrophoresis, single telomere-length analysis (STELA), and strand-specific exonuclease assays revealed the presence of a 5'-C-rich overhang at the telomeres of human and mouse chromosomes. C-overhangs were prominent in G1/S arrested as well as terminally differentiated cells, indicating that they did not represent replication intermediates. C-rich overhangs were far more prevalent in tumor cells engaged in the alternative lengthening of telomeres (ALT) pathway of telomere maintenance, which relies on the homologous recombination (HR) machinery. Transient siRNA-based depletion of the HR-specific proteins RAD51, RAD52, and XRCC3 resulted in changes in C-overhang levels, implicating the involvement of 5'-C-overhangs in the HR-dependent pathway of telomere maintenance.


Asunto(s)
Cromosomas Humanos/ultraestructura , ADN de Cadena Simple/ultraestructura , Recombinación Genética , Telómero/ultraestructura , Animales , Composición de Base , Cromosomas Humanos/química , Cromosomas Humanos/metabolismo , Citosina , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel Bidimensional , Exonucleasas/metabolismo , Células HeLa , Humanos , Ratones , Conformación de Ácido Nucleico , Interferencia de ARN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Telómero/química , Telómero/metabolismo , Transfección
13.
Nature ; 471(7339): 532-6, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21399625

RESUMEN

Maintenance of telomeres requires both DNA replication and telomere 'capping' by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.


Asunto(s)
ADN de Cadena Simple/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , ARN/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Unión Competitiva , Proteínas de Ciclo Celular/metabolismo , Extractos Celulares , Replicación del ADN , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Unión Proteica , ARN/genética , Fase S , Complejo Shelterina
14.
Trends Biochem Sci ; 37(11): 466-76, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22959736

RESUMEN

During embryogenesis, the establishment of chromatin states permits the implementation of genetic programs that allow the faithful development of the organism. However, these states are not fixed and there is much evidence that stochastic or chronic deterioration of chromatin organization, as correlated by transcriptional alterations and the accumulation of DNA damage in cells, occurs during the lifespan of the individual. Whether causal or simply a byproduct of macromolecular decay, these changes in chromatin states have emerged as potentially central conduits of mammalian aging. This review explores the current state of our understanding of the links between chromatin organization and aging.


Asunto(s)
Envejecimiento , Ensamble y Desensamble de Cromatina , Animales , Cromatina/metabolismo , Reparación del ADN , Epigénesis Genética , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos
15.
EMBO J ; 31(8): 2024-33, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22425786

RESUMEN

To counteract replication-dependent telomere shortening most eukaryotic cells rely on the telomerase pathway, which is crucial for the maintenance of proliferative potential of germ and stem cell populations of multicellular organisms. Likewise, cancer cells usually engage the telomerase pathway for telomere maintenance to gain immortality. However, in ∼10% of human cancers telomeres are maintained through telomerase-independent alternative lengthening of telomeres (ALT) pathways. Here, we describe the generation and characterization of C. elegans survivors in a strain lacking the catalytic subunit of telomerase and the nematode telomere-binding protein CeOB2. These clonal strains, some of which have been propagated for >180 generations, represent the first example of a multicellular organism with canonical telomeres that can survive without a functional telomerase pathway. The animals display the heterogeneous telomere length characteristic for ALT cells, contain single-stranded C-circles, a transcription profile pointing towards an adaptation to chronic stress and are therefore a unique and valuable tool to decipher the ALT mechanism.


Asunto(s)
Caenorhabditis elegans/enzimología , Caenorhabditis elegans/crecimiento & desarrollo , Telomerasa/deficiencia , Proteínas de Unión a Telómeros/deficiencia , Telómero/metabolismo , Animales , Caenorhabditis elegans/genética , Análisis de Supervivencia
16.
EMBO J ; 30(3): 480-93, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21179005

RESUMEN

Mammalian cells possess two isoforms of the histone H3-H4 chaperone anti-silencing function 1 (Asf1), Asf1a and Asf1b. However to date, whether they have individual physiological roles has remained elusive. Here, we aim to elucidate the functional importance of Asf1 isoforms concerning both basic and applied aspects. First, we reveal a specific proliferation-dependent expression of human Asf1b unparalleled by Asf1a. Strikingly, in cultured cells, both mRNA and protein corresponding to Asf1b decrease upon cell cycle exit. Depletion of Asf1b severely compromises proliferation, leads to aberrant nuclear structures and a distinct transcriptional signature. Second, a major physiological implication is found in the applied context of tissue samples derived from early stage breast tumours in which we examined Asf1a/b levels. We reveal that overexpression of Asf1b mRNA correlate with clinical data and disease outcome. Together, our results highlight a distribution of tasks between the distinct Asf1 isoforms, which emphasizes a specialized function of Asf1b required for proliferation capacity. We discuss the implications of these results for breast cancer diagnosis and prognosis.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Western Blotting , Neoplasias de la Mama/metabolismo , Ciclo Celular/fisiología , Línea Celular Tumoral , Proliferación Celular , Ensayo de Unidades Formadoras de Colonias , Femenino , Perfilación de la Expresión Génica , Humanos , Microscopía Fluorescente , Valor Predictivo de las Pruebas , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Nucleic Acids Res ; 40(15): 7358-67, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22576367

RESUMEN

Werner's syndrome (WS) and Bloom's syndrome (BS) are cancer predisposition disorders caused by loss of function of the RecQ helicases WRN or BLM, respectively. BS and WS are characterized by replication defects, hyperrecombination events and chromosomal aberrations, which are hallmarks of cancer. Inefficient replication of the G-rich telomeric strand contributes to chromosome aberrations in WS cells, demonstrating a link between WRN, telomeres and genomic stability. Herein, we provide evidence that BLM also contributes to chromosome-end maintenance. Telomere defects (TDs) are observed in BLM-deficient cells at an elevated frequency, which is similar to cells lacking a functional WRN helicase. Loss of both helicases exacerbates TDs and chromosome aberrations, indicating that BLM and WRN function independently in telomere maintenance. BLM localization, particularly its recruitment to telomeres, changes in response to replication dysfunction, such as in WRN-deficient cells or after aphidicolin treatment. Exposure to replication challenge causes an increase in decatenated deoxyribonucleic acid (DNA) structures and late-replicating intermediates (LRIs), which are visible as BLM-covered ultra-fine bridges (UFBs) in anaphase. A subset of UFBs originates from telomeric DNA and their frequency correlates with telomere replication defects. We propose that the BLM complex contributes to telomere maintenance through its activity in resolving LRIs.


Asunto(s)
Replicación del ADN , RecQ Helicasas/metabolismo , Telómero/enzimología , Ciclo Celular , Línea Celular , Aberraciones Cromosómicas , Cromosomas Humanos/ultraestructura , Exodesoxirribonucleasas/antagonistas & inhibidores , Humanos , RecQ Helicasas/análisis , RecQ Helicasas/antagonistas & inhibidores , Telómero/fisiología , Homeostasis del Telómero , Proteína 1 de Unión a Repeticiones Teloméricas/antagonistas & inhibidores , Helicasa del Síndrome de Werner
18.
DNA Repair (Amst) ; 133: 103591, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951043

RESUMEN

Aging is marked by the gradual accumulation of deleterious changes that disrupt organ function, creating an altered physiological state that is permissive for the onset of prevalent human diseases. While the exact mechanisms governing aging remain a subject of ongoing research, there are several cellular and molecular hallmarks that contribute to this biological process. This review focuses on two factors, namely telomere dysfunction and inflammation, which have emerged as crucial contributors to the aging process. We aim to discuss the mechanistic connections between these two distinct hallmarks and provide compelling evidence highlighting the loss of telomere protection as a driver of pro-inflammatory states associated with aging. By reevaluating the interplay between telomeres, innate immunity, and inflammation, we present novel perspectives on the etiology of aging and its associated diseases.


Asunto(s)
Envejecimiento , Telómero , Humanos , Envejecimiento/genética , Inflamación , Inmunidad Innata , Senescencia Celular
19.
Nat Commun ; 15(1): 5149, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890299

RESUMEN

Telomeres are the protective nucleoprotein structures at the end of linear eukaryotic chromosomes. Telomeres' repetitive nature and length have traditionally challenged the precise assessment of the composition and length of individual human telomeres. Here, we present Telo-seq to resolve bulk, chromosome arm-specific and allele-specific human telomere lengths using Oxford Nanopore Technologies' native long-read sequencing. Telo-seq resolves telomere shortening in five population doubling increments and reveals intrasample, chromosome arm-specific, allele-specific telomere length heterogeneity. Telo-seq can reliably discriminate between telomerase- and ALT-positive cancer cell lines. Thus, Telo-seq is a tool to study telomere biology during development, aging, and cancer at unprecedented resolution.


Asunto(s)
Envejecimiento , Neoplasias , Telómero , Humanos , Telómero/genética , Telómero/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Envejecimiento/genética , Telomerasa/genética , Telomerasa/metabolismo , Línea Celular Tumoral , Acortamiento del Telómero/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Alelos
20.
Nature ; 447(7147): 924-31, 2007 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-17581575

RESUMEN

During the evolution of linear genomes, it became essential to protect the natural chromosome ends to prevent triggering of the DNA-damage repair machinery and enzymatic attack. Telomeres - tightly regulated complexes consisting of repetitive G-rich DNA and specialized proteins - accomplish this task. Telomeres not only conceal linear chromosome ends from detection and inappropriate repair but also provide a buffer to counteract replication-associated shortening. Lessons from many model organisms have taught us about the complications of maintaining these specialized structures. Here, we discuss how telomeres interact and cooperate with the DNA replication and DNA-damage repair machineries.


Asunto(s)
Replicación del ADN , Telómero/genética , Telómero/metabolismo , Animales , Senescencia Celular/genética , Daño del ADN , Reparación del ADN , Humanos , Neoplasias/genética , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA