Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(32): 19321-19327, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719137

RESUMEN

Phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes under different environmental conditions, is critical for the origins and maintenance of biodiversity; however, the genetic mechanisms underlying plasticity as well as how variation in those mechanisms can drive evolutionary change remain poorly understood. Here, we examine the cichlid feeding apparatus, an icon of both prodigious evolutionary divergence and adaptive phenotypic plasticity. We first provide a tissue-level mechanism for plasticity in craniofacial shape by measuring rates of bone deposition within functionally salient elements of the feeding apparatus in fishes forced to employ alternate foraging modes. We show that levels and patterns of phenotypic plasticity are distinct among closely related cichlid species, underscoring the evolutionary potential of this trait. Next, we demonstrate that hedgehog (Hh) signaling, which has been implicated in the evolutionary divergence of cichlid feeding architecture, is associated with environmentally induced rates of bone deposition. Finally, to demonstrate that Hh levels are the cause of the plastic response and not simply the consequence of producing more bone, we use transgenic zebrafish in which Hh levels could be experimentally manipulated under different foraging conditions. Notably, we find that the ability to modulate bone deposition rates in different environments is dampened when Hh levels are reduced, whereas the sensitivity of bone deposition to different mechanical demands increases with elevated Hh levels. These data advance a mechanistic understanding of phenotypic plasticity in the teleost feeding apparatus and in doing so contribute key insights into the origins of adaptive morphological radiations.


Asunto(s)
Cíclidos/metabolismo , Proteínas de Peces/metabolismo , Proteínas Hedgehog/metabolismo , Cráneo/crecimiento & desarrollo , Adaptación Fisiológica , Animales , Cíclidos/genética , Cíclidos/crecimiento & desarrollo , Proteínas de Peces/genética , Proteínas Hedgehog/genética , Transducción de Señal , Cráneo/metabolismo
2.
Development ; 140(3): 660-6, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23293297

RESUMEN

Adult mammalian cardiomyocytes have little capacity to proliferate in response to injury, a deficiency that underlies the poor regenerative ability of human hearts after myocardial infarction. By contrast, zebrafish regenerate heart muscle after trauma by inducing proliferation of spared cardiomyocytes, providing a model for identifying manipulations that block or enhance these events. Although direct genetic or chemical screens of heart regeneration in adult zebrafish present several challenges, zebrafish embryos are ideal for high-throughput screening. Here, to visualize cardiomyocyte proliferation events in live zebrafish embryos, we generated transgenic zebrafish lines that employ fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. We then performed a chemical screen and identified several small molecules that increase or reduce cardiomyocyte proliferation during heart development. These compounds act via Hedgehog, Insulin-like growth factor or Transforming growth factor ß signaling pathways. Direct examination of heart regeneration after mechanical or genetic ablation injuries indicated that these pathways are activated in regenerating cardiomyocytes and that they can be pharmacologically manipulated to inhibit or enhance cardiomyocyte proliferation during adult heart regeneration. Our findings describe a new screening system that identifies molecules and pathways with the potential to modify heart regeneration.


Asunto(s)
Proliferación Celular , Corazón/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Miocitos Cardíacos/citología , Regeneración , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/metabolismo , Animales Modificados Genéticamente/fisiología , Biomarcadores/metabolismo , Catecoles/farmacología , Recuento de Células , Ciclohexilaminas/farmacología , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/fisiología , Femenino , Corazón/embriología , Proteínas Hedgehog/agonistas , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Isoquinolinas/farmacología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Tiofenos/farmacología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Transgenes , Ubiquitinación , Pez Cebra/genética , Pez Cebra/lesiones , Pez Cebra/fisiología
3.
Development ; 138(1): 75-85, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21115611

RESUMEN

The transmembrane protein Brother of Cdo (Boc) has been implicated in Shh-mediated commissural axon guidance, and can both positively and negatively regulate Hedgehog (Hh) target gene transcription, however, little is known about in vivo requirements for Boc during vertebrate embryogenesis. The zebrafish umleitung (uml(ty54)) mutant was identified by defects in retinotectal axon projections. Here, we show that the uml locus encodes Boc and that Boc function is cell-autonomously required for Hh-mediated neural patterning. Our phenotypic analysis suggests that Boc is required as a positive regulator of Hh signaling in the spinal cord, hypothalamus, pituitary, somites and upper jaw, but that Boc might negatively regulate Hh signals in the lower jaw. This study reveals a role for Boc in ventral CNS cells that receive high levels of Hh and uncovers previously unknown roles for Boc in vertebrate embryogenesis.


Asunto(s)
Sistema Nervioso Central/embriología , Proteínas Hedgehog/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Axones/metabolismo , Codón sin Sentido/genética , Genotipo , Proteínas Hedgehog/genética , Inmunohistoquímica , Hibridación in Situ , Hipófisis/embriología , Prosencéfalo/embriología , Transducción de Señal/genética , Transducción de Señal/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Gen Comp Endocrinol ; 203: 21-8, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24434597

RESUMEN

The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identified as the "freshwater-adapting hormone", promoting ion-conserving and water-secreting processes by acting on the gill, kidney, gut and urinary bladder. In mammals, prolactin is known to regulate renal, intestinal, mammary and amniotic epithelia, with dysfunction linked to hypogonadism, infertility, and metabolic disorders. Until recently, our understanding of the cellular mechanisms of prolactin action in fishes has been hampered by a paucity of molecular tools to define and study ionocytes, specialized cells that control active ion transport across branchial and epidermal epithelia. Here we review work in teleost models indicating that prolactin regulates ion balance through action on ion transporters, tight-junction proteins, and water channels in ionocytes, and discuss recent advances in our understanding of ionocyte function in the genetically and embryonically accessible zebrafish (Danio rerio). Given the high degree of evolutionary conservation in endocrine and osmoregulatory systems, these studies in teleost models are contributing novel mechanistic insight into how prolactin participates in the development, function, and dysfunction of osmoregulatory systems across the vertebrate lineage.


Asunto(s)
Sistema Endocrino/metabolismo , Células Epiteliales/metabolismo , Branquias/metabolismo , Osmorregulación/fisiología , Prolactina/metabolismo , Pez Cebra/metabolismo , Animales , Equilibrio Hidroelectrolítico/fisiología
5.
bioRxiv ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39071346

RESUMEN

Appendage shape is formed during development (and re-formed during regeneration) according to spatial and temporal cues that orchestrate local cellular morphogenesis. The caudal fin is the primary appendage used for propulsion in most fish species, and exhibits a range of distinct morphologies adapted for different swimming strategies, however the molecular mechanisms responsible for generating these diverse shapes remain mostly unknown. In zebrafish, caudal fins display a forked shape, with longer supportive bony rays at the periphery and shortest rays at the center. Here, we show that a premature, transient pulse of sonic hedgehog a (shha) overexpression during late embryonic development results in excess proliferation and growth of the central rays, causing the adult caudal fin to grow into a triangular, truncate shape. Both global and regional ectopic shha overexpression are sufficient to alter fin shape, and forked shape may be rescued by subsequent treatment with an antagonist of the canonical Shh pathway. The induced truncate fins show a decreased fin ray number and fail to form the hypural diastema that normally separates the dorsal and ventral fin lobes. While forked fins regenerate their original forked morphology, truncate fins regenerate truncate, suggesting that positional memory of the fin rays can be permanently altered by a transient treatment during embryogenesis. Ray finned fish have evolved a wide spectrum of caudal fin morphologies, ranging from truncate to forked, and the current work offers insights into the developmental mechanisms that may underlie this shape diversity.

6.
Mol Cell Endocrinol ; 571: 111937, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37086859

RESUMEN

How the growth hormone (GH)/insulin-like growth factor (IGF) system affects osmoregulation in basal vertebrates remains unknown. We examined changes in the expression of components of the GH/IGF axis and gill ion transporters during metamorphosis and following seawater (SW) exposure of sea lamprey. During metamorphosis, increases in gill nka and nkcc1 and salinity tolerance were accompanied by increases in pituitary gh, liver igf1, gill ghr and igf1, but not liver ghr. SW exposure of fully metamorphosed sea lamprey resulted in slight increases in plasma chloride concentrations after SW exposure, indicating a high level of SW tolerance, but no major changes in mRNA levels of gill ion transporters or components of the GH/IGF axis. Our results indicate that metamorphosis is a critical point in the lifecycle of sea lamprey for stimulation of the GH/IGF axis and is temporally associated with and likely promotes metamorphosis and SW tolerance.


Asunto(s)
Hormona de Crecimiento Humana , Petromyzon , Animales , Hormona del Crecimiento/metabolismo , Petromyzon/metabolismo , Hormona de Crecimiento Humana/metabolismo , Aclimatación/fisiología , Agua de Mar , Branquias/metabolismo
7.
Dev Biol ; 340(2): 293-305, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20122919

RESUMEN

The spatial and temporal control of gene expression is key to generation of specific cellular fates during development. Studies of the transcriptional repressor REST/NRSF (RE1 Silencing Transcription Factor or Neural Restrictive Silencing Factor) have provided important insight into the role that epigenetic modifications play in differential gene expression. However, the precise function of REST during embryonic development is not well understood. We have discovered a novel interaction between zebrafish Rest and the Hedgehog (Hh) signaling pathway. We observed that Rest knockdown enhances or represses Hh signaling in a context-dependant manner. In wild-type embryos and embryos with elevated Hh signaling, Rest knockdown augments transcription of Hh target genes. Conversely, in contexts where Hh signaling is diminished, Rest knockdown has the opposite effect and Hh target gene expression is further attenuated. Epistatic analysis revealed that Rest interacts with the Hh pathway at a step downstream of Smo. Furthermore, we present evidence implicating the bifunctional, Hh signaling component Gli2a as key to the Rest modulation of the Hh response. The role of Rest as a regulator of Hh signaling has broad implications for many developmental contexts where REST and Hh signaling act.


Asunto(s)
Proteínas Hedgehog/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Embrión no Mamífero/metabolismo , Epistasis Genética , Proteínas Hedgehog/genética , Hibridación in Situ , Modelos Biológicos , Proteínas Represoras/genética , Transducción de Señal/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
8.
Dev Dyn ; 239(10): 2603-18, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20806318

RESUMEN

The formation of the central nervous system depends on the coordinated development of neural and glial cell types that arise from a common precursor. Using an existing group of zebrafish mutants generated by viral insertion, we performed a "shelf-screen" to identify genes necessary for astroglial development and axon scaffold formation. We screened 274 of 315 viral insertion lines using antibodies that label axons (anti-Acetylated Tubulin) and astroglia (anti-Gfap) and identified 25 mutants with defects in gliogenesis, glial patterning, neurogenesis, and axon guidance. We also identified a novel class of mutants affecting radial glial cell numbers. Defects in astroglial patterning were always associated with axon defects, supporting an important role for axon-glial interactions during axon scaffold development. The genes disrupted in these viral lines have all been identified, providing a powerful new resource for the study of axon guidance, glio- and neurogenesis, and neuron-glial interactions during development of the vertebrate CNS.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Axones/metabolismo , Desarrollo Embrionario/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Sci Rep ; 11(1): 16462, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385489

RESUMEN

Techniques used to clear biological tissue for fluorescence microscopy are essential to connect anatomical principles at levels ranging from subcellular to the whole animal. Here we report a simple and straightforward approach to efficiently render opaque tissue samples transparent and show that this approach can be modified to rapidly label intact tissue samples with antibodies for large volume fluorescence microscopy. This strategy applies a magnetohydrodynamic (MHD) force to accelerate the removal of lipids from tissue samples at least as large as an intact adult mouse brain. We also show that MHD force can be used to accelerate antibody penetration into tissue samples. This strategy complements a growing array of tools that enable high-resolution 3-dimensional anatomical analyses in intact tissues using fluorescence microscopy. MHD-accelerated clearing is simple, fast, reliable, inexpensive, provides good thermal regulation, and is compatible with existing strategies for high-quality fluorescence microscopy of intact tissues.


Asunto(s)
Encéfalo/metabolismo , Hidrodinámica , Magnetismo , Animales , Ratones , Microscopía Fluorescente/métodos
10.
Dev Biol ; 326(1): 143-54, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19056374

RESUMEN

Hedgehog (Hh) signaling is necessary for the induction and functional patterning of the pituitary placode, however the mechanisms by which Hh signals are interpreted by placodal cells are unknown. Here we show distinct temporal requirements for Hh signaling in endocrine cell differentiation and describe a dynamic Gli transcriptional response code that interprets these Hh signals within the developing adenohypophysis. Gli1 is required for the differentiation of selected endocrine cell types and acts as the major activator of Hh-mediated pituitary induction, while Gli2a and Gli2b contribute more minor activator functions. Intriguingly, this Gli response code changes as development proceeds. Gli1 continues to be required for the activation of the Hh response anteriorly in the pars distalis. In contrast, Gli2b is required to repress Hh target gene expression posteriorly in the pars intermedia. Consistent with these changing roles, gli1, gli2a, and gli2b, but not gli3, are expressed in pituitary precursor cells at the anterior neural ridge. Later in development, gli1 expression is maintained throughout the adenohypophysis while gli2a and gli2b expression are restricted to the pars intermedia. Given the link between Hh signaling and pituitary adenomas in humans, our data suggest misregulation of Gli function may contribute to these common pituitary tumors.


Asunto(s)
Células Endocrinas/citología , Proteínas Hedgehog/fisiología , Proteínas Oncogénicas/fisiología , Hipófisis/embriología , Transactivadores/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Embrión no Mamífero/fisiología , Células Endocrinas/fisiología , Mutación/genética , Proteínas Oncogénicas/genética , Hipófisis/citología , Adenohipófisis/citología , Adenohipófisis/embriología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Alcaloides de Veratrum/farmacología , Proteínas de Pez Cebra/genética , Proteína con Dedos de Zinc GLI1 , Proteína Gli2 con Dedos de Zinc
11.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33106384

RESUMEN

Neurogenesis is now known to play a role in adult hypothalamic function, yet the cell-cell mechanisms regulating this neurogenesis remain poorly understood. Here, we show that Hedgehog (Hh)/Gli signaling positively regulates hypothalamic neurogenesis in both larval and adult zebrafish and is necessary and sufficient for normal hypothalamic proliferation rates. Hh-responsive radial glia represent a relatively highly proliferative precursor population that gives rise to dopaminergic, serotonergic, and GABAergic neurons. In situ and transgenic reporter analyses revealed substantial heterogeneity in cell-cell signaling within the hypothalamic niche, with slow cycling Nestin-expressing cells residing among distinct and overlapping populations of Sonic Hh (Shh)-expressing, Hh-responsive, Notch-responsive, and Wnt-responsive radial glia. This work shows for the first time that Hh/Gli signaling is a key component of the complex cell-cell signaling environment that regulates hypothalamic neurogenesis throughout life.


Asunto(s)
Proteínas Hedgehog , Pez Cebra , Animales , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hipotálamo/metabolismo , Larva/metabolismo , Neurogénesis , Transducción de Señal , Pez Cebra/metabolismo
12.
BMC Dev Biol ; 9: 73, 2009 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-20042114

RESUMEN

BACKGROUND: Tissue heating has been employed to study a variety of biological processes, including the study of genes that control embryonic development. Conditional regulation of gene expression is a particularly powerful approach for understanding gene function. One popular method for mis-expressing a gene of interest employs heat-inducible heat shock protein (hsp) promoters. Global heat shock of hsp-promoter-containing transgenic animals induces gene expression throughout all tissues, but does not allow for spatial control. Local heating allows for spatial control of hsp-promoter-driven transgenes, but methods for local heating are cumbersome and variably effective. RESULTS: We describe a simple, highly controllable, and versatile apparatus for heating biological tissue and other materials on the micron-scale. This microheater employs micron-scale fiber optics and uses an inexpensive laser-pointer as a power source. Optical fibers can be pulled on a standard electrode puller to produce tips of varying sizes that can then be used to reliably heat 20-100 mum targets. We demonstrate precise spatiotemporal control of hsp70l:GFP transgene expression in a variety of tissue types in zebrafish embryos and larvae. We also show how this system can be employed as part of a new method for lineage tracing that would greatly facilitate the study of organogenesis and tissue regulation at any time in the life cycle. CONCLUSION: This versatile and simple local heater has broad utility for the study of gene function and for lineage tracing. This system could be used to control hsp-driven gene expression in any organism simply by bringing the fiber optic tip in contact with the tissue of interest. Beyond these uses for the study of gene function, this device has wide-ranging utility in materials science and could easily be adapted for therapeutic purposes in humans.


Asunto(s)
Técnicas Genéticas , Respuesta al Choque Térmico , Rayos Láser , Activación Transcripcional , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes/genética , Proteínas del Choque Térmico HSP72/genética , Proteínas del Choque Térmico HSP72/metabolismo , Calor , Transgenes , Pez Cebra/embriología , Pez Cebra/metabolismo
13.
Genomics ; 91(2): 165-77, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18055165

RESUMEN

The Hedgehog (Hh) signaling pathway plays critical instructional roles during embryonic development. Misregulation of Hh/Gli signaling is a major causative factor in human congenital disorders and in a variety of cancers. The zebrafish is a powerful genetic model for the study of Hh signaling during embryogenesis, as a large number of mutants that affect different components of the Hh/Gli signaling system have been identified. By performing global profiling of gene expression in different Hh/Gli gain- and loss-of-function scenarios we identified known (e.g., ptc1 and nkx2.2a) and novel Hh-regulated genes that are differentially expressed in embryos with altered Hh/Gli signaling function. By uncovering changes in tissue-specific gene expression, we revealed new embryological processes that are influenced by Hh signaling. We thus provide a comprehensive survey of Hh/Gli-regulated genes during embryogenesis and we identify new Hh-regulated genes that may be targets of misregulation during tumorigenesis.


Asunto(s)
Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Oncogénicas/genética , Transactivadores/genética , Animales , Perfilación de la Expresión Génica , Neoplasias/etiología , Neoplasias/genética , Transducción de Señal , Distribución Tisular , Pez Cebra , Proteína con Dedos de Zinc GLI1
14.
Endocrinology ; 149(9): 4435-51, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18499750

RESUMEN

The vertebrate adenohypophysis forms as a placode at the anterior margin of the neural plate, requiring both hedgehog (Hh) and fibroblast growth factor (Fgf) mediated cell-cell signaling for induction and survival of endocrine cell types. Using small molecule inhibitors to modulate signaling levels during zebrafish development we show that graded Hh and Fgf signaling independently help establish the two subdomains of the adenohypophysis, the anteriorly located pars distalis (PD) and the posterior pars intermedia (PI). High levels of Hh signaling are required for formation of the PD and differentiation of anterior endocrine cell types, whereas lower levels of Hh signaling are required for formation of the PI and differentiation of posterior endocrine cell types. In contrast, high Fgf signaling levels are required for formation of the PI and posterior endocrine cell differentiation, whereas anterior regions require lower levels of Fgf signaling. Based on live observations and marker analyses, we show that the PD forms first at the midline closest to the central nervous system source of Sonic hedgehog. In contrast the PI appears to form from more lateral/posterior cells close to a central nervous system source of Fgf3. Together our data show that graded Hh and Fgf signaling independently direct induction of the PD and PI and help establish endocrine cell fates along the anterior/posterior axis of the zebrafish adenohypophysis. These data suggest that there are distinct origins and signaling requirements for the PD and PI.


Asunto(s)
Diferenciación Celular , Factores de Crecimiento de Fibroblastos/fisiología , Proteínas Hedgehog/fisiología , Adenohipófisis/embriología , Adenohipófisis Porción Intermedia/embriología , Hipófisis/embriología , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Diferenciación Celular/genética , Simulación por Computador , Embrión no Mamífero , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Modelos Biológicos , Hipófisis/metabolismo , Hipófisis/fisiología , Adenohipófisis/metabolismo , Adenohipófisis Porción Intermedia/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Transcripción Genética , Pez Cebra
15.
Gene Expr Patterns ; 7(5): 596-605, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17307034

RESUMEN

Sonic Hedgehog (Shh) signaling helps pattern the vertebrate neural tube, in part by regulating the dorsal/ventral expression of a number of homeodomain containing transcription factors. These Hh responsive genes have been divided into two classes, with Class II genes being activated by Hh signaling and Class I genes being repressed by Hh signaling. While the transcriptional response to varying Hh levels is well defined in chick and mouse, it is only partially described in zebrafish, despite the fact that zebrafish has emerged as a powerful genetic system for the study of neural patterning. To better characterize the Hh response in the zebrafish neural tube, we cloned the zebrafish Class II Hh target genes nkx2.9 and nkx6.2. We then analyzed the expression of a number of Class I and Class II Hh responsive genes in wild type, Hh mutant, and Hh over-expressing zebrafish embryos. We show that expression of Class I and Class II genes is highly conserved in the vertebrate neural tube. Further, ventral-most Class II gene expression was completely lost in all Hh pathway mutants analyzed, indicating high levels of Hh signaling are blocked in all of these mutants. In contrast, more dorsally expressed genes were variably affected in different Hh pathway mutants, indicating mid-levels of Hh signaling are differentially affected. This comprehensive expression study provides an important tool for the characterization of Hh signaling in zebrafish and provides a sensitive assay for determining the degree to which newly identified zebrafish mutants affect Hh signaling.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neuronas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Hibridación in Situ , Neuronas/citología , Sondas ARN , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
16.
Endocrinology ; 158(9): 2774-2782, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28658938

RESUMEN

Low thyroid hormone (TH) conditions caused by a variety of prenatal and perinatal problems have been shown to alter postnatal regulatory thyrotropin (TSH) responsiveness to TH in humans and rodents. The mechanisms underlying this pituitary TH resistance remain unknown. Here we use the evolutionarily conserved zebrafish model to examine the effects of low TH on thyrotrope development and function. Zebrafish were exposed to the goitrogen 6-propyl-2-thiouracil (PTU) to block TH synthesis, and this led to an approximately 50% increase in thyrotrope numbers and an 8- to 10-fold increase in tshb mRNA abundance in 2-week-old larvae and 1-month-old juveniles. Thyrotrope numbers returned to normal 3 weeks after cessation of PTU treatment, demonstrating that these effects were reversible and revealing substantial plasticity in pituitary-thyroid axis regulation. Using a T4 challenge assay, we found that development under low-TH conditions did not affect the ability of T4 to suppress tshb mRNA levels despite the thyrotrope hyperplasia that resulted from temporary low-TH conditions. Together, these studies show that low developmental TH levels can lead to changes in thyrotrope number and function, providing a possible cellular mechanism underlying elevated TSH levels seen in neonates with either permanent or transient congenital hypothyroidism.


Asunto(s)
Hipófisis/efectos de los fármacos , Hipófisis/embriología , Hormonas Tiroideas/farmacología , Tirotrofos/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Hipotiroidismo Congénito/complicaciones , Hipotiroidismo Congénito/embriología , Hipotiroidismo Congénito/genética , Hipotiroidismo Congénito/patología , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Organogénesis/efectos de los fármacos , Hipófisis/citología , Hipófisis/patología , Propiltiouracilo/farmacología , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Tirotrofos/citología , Tirotrofos/fisiología , Tirotropina de Subunidad beta/genética , Pez Cebra/embriología , Pez Cebra/genética
17.
J Clin Invest ; 124(1): 321-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24316972

RESUMEN

Central congenital hypothyroidism (CCH) is more prevalent in children born to women with hyperthyroidism during pregnancy, suggesting a role for thyroid hormone (TH) in the development of central thyroid regulation. Using the zebrafish embryo as a model for thyroid axis development, we have characterized the ontogeny of negative feedback regulation of thyrotrope function and examined the effect of excess TH on thyrotrope development. We found that thyroid-stimulating hormone ß subunit (tshb) and type 2 deiodinase (dio2) are coexpressed in zebrafish thyrotropes by 48 hours after fertilization and that TH-driven negative feedback regulation of tshb transcription appears in the thyroid axis by 96 hours after fertilization. Negative feedback regulation correlated with increased systemic TH levels from the developing thyroid follicles. We used a transgenic zebrafish that expresses GFP under the control of the tshb promoter to follow thyrotrope fates in vivo. Time-lapse imaging revealed that early exposure to elevated TH leads to thyrotrope cell death. Thyrotrope numbers slowly recovered following the removal of excess TH. These data demonstrate that transient TH exposure profoundly impacts the thyrotrope population during a critical period of pituitary development and may have long-term implications for the functional reserve of thyroid-stimulating hormone (TSH) production and the TSH set point later in life.


Asunto(s)
Apoptosis , Hormonas Tiroideas/fisiología , Tirotrofos/fisiología , Tiroxina/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Hipotiroidismo Congénito/metabolismo , Hipotiroidismo Congénito/patología , Embrión no Mamífero/patología , Retroalimentación Fisiológica , Femenino , Humanos , Yoduro Peroxidasa/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Tirotropina de Subunidad beta/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo , Yodotironina Deyodinasa Tipo II
18.
Mol Cell Endocrinol ; 369(1-2): 98-106, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23395804

RESUMEN

Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL receptor (prlra), Na(+)/Cl(-) cotransporter (ncc; slc12a10.2), Na(+)/H(+) exchanger (nhe3b; slc9a3.2), and epithelial Ca(2+) channel (ecac; trpv6) transcripts within the gill. Intraperitoneal injection of ovine PRL (oPRL) increased ncc and prlra transcripts, but did not affect nhe3b or ecac. Consistent with direct PRL action in the gill, addition of oPRL to cultured gill filaments stimulated ncc in a concentration-dependent manner, an effect blocked by a pure human PRL receptor antagonist (Δ1-9-G129R-hPRL). These results suggest that PRL signaling through PRL receptors in the gill regulates the expression of ncc, thereby linking this pituitary hormone with an effector of Cl(-) uptake in zebrafish for the first time.


Asunto(s)
Branquias/metabolismo , Transporte Iónico , Prolactina/análogos & derivados , Prolactina/fisiología , Simportadores del Cloruro de Sodio/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Branquias/efectos de los fármacos , Prolactina/farmacología , Receptores de Prolactina/antagonistas & inhibidores , Receptores de Prolactina/metabolismo , Simportadores del Cloruro de Sodio/genética , Transcripción Genética/efectos de los fármacos , Agua/química , Equilibrio Hidroelectrolítico/efectos de los fármacos , Proteínas de Pez Cebra/genética
19.
Mech Dev ; 126(8-9): 700-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19481601

RESUMEN

Acheron (Achn), a phylogenetically-conserved member of the Lupus antigen family of RNA binding proteins, was initially identified as a novel cell death-associated gene from the intersegmental muscles of the tobacco hawkmoth Manduca sexta. C(2)C(12) cells are a standard model for the study of myogenesis. When deprived of growth factors, these cells can be induced to: form multinucleated myotubes, arrest as quiescent satellite-like reserve cells, or undergo apoptosis. Achn expression is induced in myoblasts that form myotubes and acts upstream of the muscle specific transcription factor MyoD. Forced expression of ectopic Achn resulted in the formation of larger myotubes and massive reserve cell death relative to controls. Conversely, dominant-negative or antisense Achn blocked myotube formation following loss of growth factors, suggesting that Achn plays an essential, permissive role in myogenesis. Studies in zebrafish embryos support this hypothesis. Reduction of Achn with antisense morpholinos led to muscle fiber loss and an increase in the number of surviving cells in the somites, while ectopic Achn enhanced muscle fiber formation and reduced cell numbers. These results display a crucial evolutionarily conserved role for Achn in myogenesis and suggest that it plays key roles in the processes of differentiation and self-renewal.


Asunto(s)
Autoantígenos/fisiología , Regulación de la Expresión Génica , Músculos/citología , Ribonucleoproteínas/fisiología , Animales , Apoptosis , Autoantígenos/metabolismo , Diferenciación Celular , Línea Celular , Supervivencia Celular , Manduca/metabolismo , Ratones , Modelos Biológicos , Músculos/embriología , Músculos/metabolismo , Proteína MioD/metabolismo , Filogenia , Ribonucleoproteínas/metabolismo , Células Madre/citología , Pez Cebra , Antígeno SS-B
20.
Methods ; 39(3): 207-11, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16837210

RESUMEN

The combination of accessible embryology and forward genetic techniques has made zebrafish a powerful model system for the study of vertebrate development. One limitation of genetic analysis is that the study of gene function is usually limited to the first developmental event affected by a gene. In vivo electroporation has recently matured as a method for studying gene function at different developmental time points and in specific regions of the organism. The focal application of current allows macromolecules to be efficiently introduced into a targeted region at any time in the life cycle. Here we describe a rapid protocol by which DNA, RNA and morpholinos can all be precisely electroporated into zebrafish in a temporally and spatially controlled manner. This versatile technique allows gene function to be determined by both gain and loss of function analyses in specific regions at specific times. This is the first report that describes the electroporation of three different molecules into embryonic and larval zebrafish cells.


Asunto(s)
ADN , Electroporación/métodos , Oligonucleótidos Antisentido , ARN , Pez Cebra/genética , Animales , Electroporación/instrumentación , Embrión no Mamífero/química , Proteínas Fluorescentes Verdes/análisis , Pez Cebra/embriología , Proteínas de Pez Cebra/análisis , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA