Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(2): e2312159120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38175862

RESUMEN

We address the challenge of acoustic simulations in three-dimensional (3D) virtual rooms with parametric source positions, which have applications in virtual/augmented reality, game audio, and spatial computing. The wave equation can fully describe wave phenomena such as diffraction and interference. However, conventional numerical discretization methods are computationally expensive when simulating hundreds of source and receiver positions, making simulations with parametric source positions impractical. To overcome this limitation, we propose using deep operator networks to approximate linear wave-equation operators. This enables the rapid prediction of sound propagation in realistic 3D acoustic scenes with parametric source positions, achieving millisecond-scale computations. By learning a compact surrogate model, we avoid the offline calculation and storage of impulse responses for all relevant source/listener pairs. Our experiments, including various complex scene geometries, show good agreement with reference solutions, with root mean squared errors ranging from 0.02 to 0.10 Pa. Notably, our method signifies a paradigm shift as-to our knowledge-no prior machine learning approach has achieved precise predictions of complete wave fields within realistic domains.

2.
Proc Natl Acad Sci U S A ; 120(14): e2217744120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36989300

RESUMEN

Quantifying the flow of cerebrospinal fluid (CSF) is crucial for understanding brain waste clearance and nutrient delivery, as well as edema in pathological conditions such as stroke. However, existing in vivo techniques are limited to sparse velocity measurements in pial perivascular spaces (PVSs) or low-resolution measurements from brain-wide imaging. Additionally, volume flow rate, pressure, and shear stress variation in PVSs are essentially impossible to measure in vivo. Here, we show that artificial intelligence velocimetry (AIV) can integrate sparse velocity measurements with physics-informed neural networks to quantify CSF flow in PVSs. With AIV, we infer three-dimensional (3D), high-resolution velocity, pressure, and shear stress. Validation comes from training with 70% of PTV measurements and demonstrating close agreement with the remaining 30%. A sensitivity analysis on the AIV inputs shows that the uncertainty in AIV inferred quantities due to uncertainties in the PVS boundary locations inherent to in vivo imaging is less than 30%, and the uncertainty from the neural net initialization is less than 1%. In PVSs of N = 4 wild-type mice we find mean flow speed 16.33 ± 11.09 µm/s, volume flow rate 2.22 ± 1.983 × 103 µm3/s, axial pressure gradient ( - 2.75 ± 2.01)×10-4 Pa/µm (-2.07 ± 1.51 mmHg/m), and wall shear stress (3.00 ± 1.45)×10-3 Pa (all mean ± SE). Pressure gradients, flow rates, and resistances agree with prior predictions. AIV infers in vivo PVS flows in remarkable detail, which will improve fluid dynamic models and potentially clarify how CSF flow changes with aging, Alzheimer's disease, and small vessel disease.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Animales , Ratones , Reología/métodos , Encéfalo , Física , Velocidad del Flujo Sanguíneo
3.
PLoS Comput Biol ; 20(3): e1011916, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470870

RESUMEN

Discovering mathematical equations that govern physical and biological systems from observed data is a fundamental challenge in scientific research. We present a new physics-informed framework for parameter estimation and missing physics identification (gray-box) in the field of Systems Biology. The proposed framework-named AI-Aristotle-combines the eXtreme Theory of Functional Connections (X-TFC) domain-decomposition and Physics-Informed Neural Networks (PINNs) with symbolic regression (SR) techniques for parameter discovery and gray-box identification. We test the accuracy, speed, flexibility, and robustness of AI-Aristotle based on two benchmark problems in Systems Biology: a pharmacokinetics drug absorption model and an ultradian endocrine model for glucose-insulin interactions. We compare the two machine learning methods (X-TFC and PINNs), and moreover, we employ two different symbolic regression techniques to cross-verify our results. To test the performance of AI-Aristotle, we use sparse synthetic data perturbed by uniformly distributed noise. More broadly, our work provides insights into the accuracy, cost, scalability, and robustness of integrating neural networks with symbolic regressors, offering a comprehensive guide for researchers tackling gray-box identification challenges in complex dynamical systems in biomedicine and beyond.


Asunto(s)
Benchmarking , Aprendizaje Automático , Redes Neurales de la Computación , Física , Biología de Sistemas
4.
Biophys J ; 123(9): 1069-1084, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38532625

RESUMEN

Macrophage phagocytosis is critical for the immune response, homeostasis regulation, and tissue repair. This intricate process involves complex changes in cell morphology, cytoskeletal reorganization, and various receptor-ligand interactions controlled by mechanical constraints. However, there is a lack of comprehensive theoretical and computational models that investigate the mechanical process of phagocytosis in the context of cytoskeletal rearrangement. To address this issue, we propose a novel coarse-grained mesoscopic model that integrates a fluid-like cell membrane and a cytoskeletal network to study the dynamic phagocytosis process. The growth of actin filaments results in the formation of long and thin pseudopods, and the initial cytoskeleton can be disassembled upon target entry and reconstructed after phagocytosis. Through dynamic changes in the cytoskeleton, our macrophage model achieves active phagocytosis by forming a phagocytic cup utilizing pseudopods in two distinct ways. We have developed a new algorithm for modifying membrane area to prevent membrane rupture and ensure sufficient surface area during phagocytosis. In addition, the bending modulus, shear stiffness, and cortical tension of the macrophage model are investigated through computation of the axial force for the tubular structure and micropipette aspiration. With this model, we simulate active phagocytosis at the cytoskeletal level and investigate the mechanical process during the dynamic interplay between macrophage and target particles.


Asunto(s)
Macrófagos , Modelos Biológicos , Fagocitosis , Seudópodos , Macrófagos/citología , Macrófagos/metabolismo , Seudópodos/metabolismo , Membrana Celular/metabolismo , Fenómenos Biomecánicos , Citoesqueleto/metabolismo
5.
PLoS Comput Biol ; 19(12): e1011223, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38091361

RESUMEN

Being the largest lymphatic organ in the body, the spleen also constantly controls the quality of red blood cells (RBCs) in circulation through its two major filtration components, namely interendothelial slits (IES) and red pulp macrophages. In contrast to the extensive studies in understanding the filtration function of IES, fewer works investigate how the splenic macrophages retain the aged and diseased RBCs, i.e., RBCs in sickle cell disease (SCD). Herein, we perform a computational study informed by companion experiments to quantify the dynamics of RBCs captured and retained by the macrophages. We first calibrate the parameters in the computational model based on microfluidic experimental measurements for sickle RBCs under normoxia and hypoxia, as those parameters are not available in the literature. Next, we quantify the impact of key factors expected to dictate the RBC retention by the macrophages in the spleen, namely, blood flow conditions, RBC aggregation, hematocrit, RBC morphology, and oxygen levels. Our simulation results show that hypoxic conditions could enhance the adhesion between the sickle RBCs and macrophages. This, in turn, increases the retention of RBCs by as much as four-fold, which could be a possible cause of RBC congestion in the spleen of patients with SCD. Our study on the impact of RBC aggregation illustrates a 'clustering effect', where multiple RBCs in one aggregate can make contact and adhere to the macrophages, leading to a higher retention rate than that resulting from RBC-macrophage pair interactions. Our simulations of sickle RBCs flowing past macrophages for a range of blood flow velocities indicate that the increased blood velocity could quickly attenuate the function of the red pulp macrophages on detaining aged or diseased RBCs, thereby providing a possible rationale for the slow blood flow in the open circulation of the spleen. Furthermore, we quantify the impact of RBC morphology on their tendency to be retained by the macrophages. We find that the sickle and granular-shaped RBCs are more likely to be filtered by macrophages in the spleen. This finding is consistent with the observation of low percentages of these two forms of sickle RBCs in the blood smear of SCD patients. Taken together, our experimental and simulation results aid in our quantitative understanding of the function of splenic macrophages in retaining the diseased RBCs and provide an opportunity to combine such knowledge with the current knowledge of the interaction between IES and traversing RBCs to apprehend the complete filtration function of the spleen in SCD.


Asunto(s)
Anemia de Células Falciformes , Enfermedades Hematológicas , Humanos , Anciano , Eritrocitos , Bazo/fisiología , Macrófagos
6.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33762307

RESUMEN

Understanding the mechanics of blood flow is necessary for developing insights into mechanisms of physiology and vascular diseases in microcirculation. Given the limitations of technologies available for assessing in vivo flow fields, in vitro methods based on traditional microfluidic platforms have been developed to mimic physiological conditions. However, existing methods lack the capability to provide accurate assessment of these flow fields, particularly in vessels with complex geometries. Conventional approaches to quantify flow fields rely either on analyzing only visual images or on enforcing underlying physics without considering visualization data, which could compromise accuracy of predictions. Here, we present artificial-intelligence velocimetry (AIV) to quantify velocity and stress fields of blood flow by integrating the imaging data with underlying physics using physics-informed neural networks. We demonstrate the capability of AIV by quantifying hemodynamics in microchannels designed to mimic saccular-shaped microaneurysms (microaneurysm-on-a-chip, or MAOAC), which signify common manifestations of diabetic retinopathy, a leading cause of vision loss from blood-vessel damage in the retina in diabetic patients. We show that AIV can, without any a priori knowledge of the inlet and outlet boundary conditions, infer the two-dimensional (2D) flow fields from a sequence of 2D images of blood flow in MAOAC, but also can infer three-dimensional (3D) flow fields using only 2D images, thanks to the encoded physics laws. AIV provides a unique paradigm that seamlessly integrates images, experimental data, and underlying physics using neural networks to automatically analyze experimental data and infer key hemodynamic indicators that assess vascular injury.


Asunto(s)
Inteligencia Artificial , Velocidad del Flujo Sanguíneo , Retinopatía Diabética/diagnóstico , Imagenología Tridimensional/métodos , Dispositivos Laboratorio en un Chip , Microaneurisma/diagnóstico , Vasos Retinianos/fisiopatología , Reología/métodos , Simulación por Computador , Retinopatía Diabética/fisiopatología , Hemodinámica , Humanos , Microaneurisma/fisiopatología , Técnicas Analíticas Microfluídicas , Flujo Sanguíneo Regional
7.
Biophys J ; 122(12): 2590-2604, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37231647

RESUMEN

Erythrophagocytosis occurring in the spleen is a critical process for removing senescent and diseased red blood cells (RBCs) from the microcirculation. Although some progress has been made in understanding how the biological signaling pathways mediate the phagocytic processes, the role of the biophysical interaction between RBCs and macrophages, particularly under pathological conditions such as sickle cell disease, has not been adequately studied. Here, we combine computational simulations with microfluidic experiments to quantify RBC-macrophage adhesion dynamics under flow conditions comparable to those in the red pulp of the spleen. We also investigate the RBC-macrophage interaction under normoxic and hypoxic conditions. First, we calibrate key model parameters in the adhesion model using microfluidic experiments for normal and sickle RBCs under normoxia and hypoxia. We then study the adhesion dynamics between the RBC and the macrophage. Our simulation illustrates three typical adhesion states, each characterized by a distinct dynamic motion of the RBCs, namely firm adhesion, flipping adhesion, and no adhesion (either due to no contact with macrophages or detachment from the macrophages). We also track the number of bonds formed when RBCs and macrophages are in contact, as well as the contact area between the two interacting cells, providing mechanistic explanations for the three adhesion states observed in the simulations and microfluidic experiments. Furthermore, we quantify, for the first time to our knowledge, the adhesive forces between RBCs (normal and sickle) and macrophages under different oxygenated conditions. Our results show that the adhesive forces between normal cells and macrophages under normoxia are in the range of 33-58 pN and 53-92 pN for sickle cells under normoxia and 155-170 pN for sickle cells under hypoxia. Taken together, our microfluidic and simulation results improve our understanding of the biophysical interaction between RBCs and macrophages in sickle cell disease and provide a solid foundation for investigating the filtration function of the splenic macrophages under physiological and pathological conditions.


Asunto(s)
Anemia de Células Falciformes , Humanos , Eritrocitos , Eritrocitos Anormales , Hipoxia/metabolismo , Hipoxia/patología , Macrófagos , Adhesión Celular
8.
PLoS Comput Biol ; 18(10): e1010660, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36315608

RESUMEN

Many genetic mutations adversely affect the structure and function of load-bearing soft tissues, with clinical sequelae often responsible for disability or death. Parallel advances in genetics and histomechanical characterization provide significant insight into these conditions, but there remains a pressing need to integrate such information. We present a novel genotype-to-biomechanical phenotype neural network (G2Φnet) for characterizing and classifying biomechanical properties of soft tissues, which serve as important functional readouts of tissue health or disease. We illustrate the utility of our approach by inferring the nonlinear, genotype-dependent constitutive behavior of the aorta for four mouse models involving defects or deficiencies in extracellular constituents. We show that G2Φnet can infer the biomechanical response while simultaneously ascribing the associated genotype by utilizing limited, noisy, and unstructured experimental data. More broadly, G2Φnet provides a powerful method and a paradigm shift for correlating genotype and biomechanical phenotype quantitatively, promising a better understanding of their interplay in biological tissues.


Asunto(s)
Aprendizaje Profundo , Ratones , Animales , Fenómenos Biomecánicos , Genotipo , Fenotipo , Aorta
9.
Proc Natl Acad Sci U S A ; 117(42): 26091-26098, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020279

RESUMEN

We have demonstrated the effectiveness of reinforcement learning (RL) in bluff body flow control problems both in experiments and simulations by automatically discovering active control strategies for drag reduction in turbulent flow. Specifically, we aimed to maximize the power gain efficiency by properly selecting the rotational speed of two small cylinders, located parallel to and downstream of the main cylinder. By properly defining rewards and designing noise reduction techniques, and after an automatic sequence of tens of towing experiments, the RL agent was shown to discover a control strategy that is comparable to the optimal strategy found through lengthy systematically planned control experiments. Subsequently, these results were verified by simulations that enabled us to gain insight into the physical mechanisms of the drag reduction process. While RL has been used effectively previously in idealized computer flow simulation studies, this study demonstrates its effectiveness in experimental fluid mechanics and verifies it by simulations, potentially paving the way for efficient exploration of additional active flow control strategies in other complex fluid mechanics applications.


Asunto(s)
Algoritmos , Simulación por Computador , Ambiente , Aprendizaje/fisiología , Modelos Biológicos , Refuerzo en Psicología , Humanos , Fenómenos Físicos
10.
Proc Natl Acad Sci U S A ; 117(13): 7052-7062, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32179694

RESUMEN

Instrumented indentation has been developed and widely utilized as one of the most versatile and practical means of extracting mechanical properties of materials. This method is particularly desirable for those applications where it is difficult to experimentally determine the mechanical properties using stress-strain data obtained from coupon specimens. Such applications include material processing and manufacturing of small and large engineering components and structures involving the following: three-dimensional (3D) printing, thin-film and multilayered structures, and integrated manufacturing of materials for coupled mechanical and functional properties. Here, we utilize the latest developments in neural networks, including a multifidelity approach whereby deep-learning algorithms are trained to extract elastoplastic properties of metals and alloys from instrumented indentation results using multiple datasets for desired levels of improved accuracy. We have established algorithms for solving inverse problems by recourse to single, dual, and multiple indentation and demonstrate that these algorithms significantly outperform traditional brute force computations and function-fitting methods. Moreover, we present several multifidelity approaches specifically for solving the inverse indentation problem which 1) significantly reduce the number of high-fidelity datasets required to achieve a given level of accuracy, 2) utilize known physical and scaling laws to improve training efficiency and accuracy, and 3) integrate simulation and experimental data for training disparate datasets to learn and minimize systematic errors. The predictive capabilities and advantages of these multifidelity methods have been assessed by direct comparisons with experimental results for indentation for different commercial alloys, including two wrought aluminum alloys and several 3D printed titanium alloys.

11.
Biophys J ; 121(18): 3309-3319, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36028998

RESUMEN

Microthrombi and circulating cell clusters are common microscopic findings in patients with coronavirus disease 2019 (COVID-19) at different stages in the disease course, implying that they may function as the primary drivers in disease progression. Inspired by a recent flow imaging cytometry study of the blood samples from patients with COVID-19, we perform computational simulations to investigate the dynamics of different types of circulating cell clusters, namely white blood cell (WBC) clusters, platelet clusters, and red blood cell clusters, over a range of shear flows and quantify their impact on the viscosity of the blood. Our simulation results indicate that the increased level of fibrinogen in patients with COVID-19 can promote the formation of red blood cell clusters at relatively low shear rates, thereby elevating the blood viscosity, a mechanism that also leads to an increase in viscosity in other blood diseases, such as sickle cell disease and type 2 diabetes mellitus. We further discover that the presence of WBC clusters could also aggravate the abnormalities of local blood rheology. In particular, the extent of elevation of the local blood viscosity is enlarged as the size of the WBC clusters grows. On the other hand, the impact of platelet clusters on the local rheology is found to be negligible, which is likely due to the smaller size of the platelets. The difference in the impact of WBC and platelet clusters on local hemorheology provides a compelling explanation for the clinical finding that the number of WBC clusters is significantly correlated with thrombotic events in COVID-19 whereas platelet clusters are not. Overall, our study demonstrates that our computational models based on dissipative particle dynamics can serve as a powerful tool to conduct quantitative investigation of the mechanism causing the pathological alterations of hemorheology and explore their connections to the clinical manifestations in COVID-19.


Asunto(s)
COVID-19 , Viscosidad Sanguínea , COVID-19/sangre , Fibrinógeno/metabolismo , Hemorreología , Humanos
12.
PLoS Comput Biol ; 17(11): e1009516, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34723962

RESUMEN

The spleen, the largest secondary lymphoid organ in humans, not only fulfils a broad range of immune functions, but also plays an important role in red blood cell's (RBC) life cycle. Although much progress has been made to elucidate the critical biological processes involved in the maturation of young RBCs (reticulocytes) as well as removal of senescent RBCs in the spleen, the underlying mechanisms driving these processes are still obscure. Herein, we perform a computational study to simulate the passage of RBCs through interendothelial slits (IES) in the spleen at different stages of their lifespan and investigate the role of the spleen in facilitating the maturation of reticulocytes and in clearing the senescent RBCs. Our simulations reveal that at the beginning of the RBC life cycle, intracellular non-deformable particles in reticulocytes can be biomechanically expelled from the cell upon passage through IES, an insightful explanation of why this peculiar "pitting" process is spleen-specific. Our results also show that immature RBCs shed surface area by releasing vesicles after crossing IES and progressively acquire the biconcave shape of mature RBCs. These findings likely explain why RBCs from splenectomized patients are significantly larger than those from nonsplenectomized subjects. Finally, we show that at the end of their life span, senescent RBCs are not only retained by IES due to reduced deformability but also become susceptible to mechanical lysis under shear stress. This finding supports the recent hypothesis that transformation into a hemolyzed ghost is a prerequisite for phagocytosis of senescent RBCs. Altogether, our computational investigation illustrates critical biological processes in the spleen that cannot be observed in vivo or in vitro and offer insights into the role of the spleen in the RBC physiology.


Asunto(s)
Forma de la Célula , Senescencia Celular , Biología Computacional/métodos , Eritrocitos , Bazo/fisiología , Hemólisis , Humanos
13.
Artículo en Inglés | MEDLINE | ID: mdl-37384215

RESUMEN

Multiscale modeling is an effective approach for investigating multiphysics systems with largely disparate size features, where models with different resolutions or heterogeneous descriptions are coupled together for predicting the system's response. The solver with lower fidelity (coarse) is responsible for simulating domains with homogeneous features, whereas the expensive high-fidelity (fine) model describes microscopic features with refined discretization, often making the overall cost prohibitively high, especially for time-dependent problems. In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver. DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics. It is then coupled with standard PDE solvers for predicting the multiscale systems with new boundary/initial conditions in the coupling stage. The proposed framework significantly reduces the computational cost of multiscale simulations since the DeepONet inference cost is negligible, facilitating readily the incorporation of a plurality of interface conditions and coupling schemes. We present various benchmarks to assess the accuracy and efficiency, including static and time-dependent problems. We also demonstrate the feasibility of coupling of a continuum model (finite element methods, FEM) with a neural operator, serving as a surrogate of a particle system (Smoothed Particle Hydrodynamics, SPH), for predicting mechanical responses of anisotropic and hyperelastic materials. What makes this approach unique is that a well-trained over-parametrized DeepONet can generalize well and make predictions at a negligible cost.

14.
Biophys J ; 120(13): 2723-2733, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34087210

RESUMEN

Hyperviscosity syndrome (HVS) is characterized by an increase of the blood viscosity by up to seven times the normal blood viscosity, resulting in disturbances to the circulation in the vasculature system. HVS is commonly associated with an increase of large plasma proteins and abnormalities in the properties of red blood cells, such as cell interactions, cell stiffness, and increased hematocrit. Here, we perform a systematic study of the effect of each biophysical factor on the viscosity of blood by employing the dissipative particle dynamic method. Our in silico platform enables manipulation of each parameter in isolation, providing a unique scheme to quantify and accurately investigate the role of each factor in increasing the blood viscosity. To study the effect of these four factors independently, each factor was elevated more than its values for a healthy blood while the other factors remained constant, and viscosity measurement was performed for different hematocrits and flow rates. Although all four factors were found to increase the overall blood viscosity, these increases were highly dependent on the hematocrit and the flow rates imposed. The effect of cell aggregation and cell concentration on blood viscosity were predominantly observed at low shear rates, in contrast to the more magnified role of cell rigidity and plasma viscosity at high shear rates. Additionally, cell-related factors increase the whole blood viscosity at high hematocrits compared with the relative role of plasma-related factors at lower hematocrits. Our results, mapped onto the flow rates and hematocrits along the circulatory system, provide a correlation to underpinning mechanisms for HVS findings in different blood vessels.


Asunto(s)
Viscosidad Sanguínea , Hemorreología , Biofisica , Simulación por Computador , Hematócrito
15.
Biophys J ; 120(21): 4663-4671, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34619119

RESUMEN

Because of their compromised deformability, heat denatured erythrocytes have been used as labeled probes to visualize spleen tissue or to assess the ability of the spleen to retain stiff red blood cells (RBCs) for over three decades, e.g., see Looareesuwan et al. N. Engl. J. Med. (1987). Despite their good accessibility, it is still an open question how heated RBCs compare to certain diseased RBCs in terms of their biomechanical and biorheological responses, which may undermine their effective usage and even lead to misleading experimental observations. To help answering this question, we perform a systematic computational study of the hemorheological properties of heated RBCs with several physiologically relevant static and hemodynamic settings, including optical-tweezers test, relaxation of prestretched RBCs, RBC traversal through a capillary-like channel and a spleen-like slit, and a viscometric rheology test. We show that our in silico RBC models agree well with existing experiments. Moreover, under static tests, heated RBCs exhibit deformability deterioration comparable to certain disease-impaired RBCs such as those in malaria. For RBC traversal under confinement (through microchannel or slit), heated RBCs show prolonged transit time or retention depending on the level of confinement and heating procedure, suggesting that carefully heat-treated RBCs may be useful for studying splenic- or vaso-occlusion in vascular pathologies. For the rheology test, we expand the existing bulk viscosity data of heated RBCs to a wider range of shear rates (1-1000 s-1) to represent most pathophysiological conditions in macro- or microcirculation. Although heated RBC suspension shows elevated viscosity comparable to certain diseased RBC suspensions under relatively high shear rates (100-1000 s-1), they underestimate the elevated viscosity (e.g., in sickle cell anemia) at low shear rates (<10 s-1). Our work provides mechanistic rationale for selective usage of heated RBC as a potentially useful model for studying the abnormal traversal dynamics and hemorheology in certain blood disorders.


Asunto(s)
Anemia de Células Falciformes , Calor , Fenómenos Biomecánicos , Deformación Eritrocítica , Eritrocitos , Hemorreología , Humanos
16.
PLoS Comput Biol ; 16(11): e1007575, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33206658

RESUMEN

Mathematical models of biological reactions at the system-level lead to a set of ordinary differential equations with many unknown parameters that need to be inferred using relatively few experimental measurements. Having a reliable and robust algorithm for parameter inference and prediction of the hidden dynamics has been one of the core subjects in systems biology, and is the focus of this study. We have developed a new systems-biology-informed deep learning algorithm that incorporates the system of ordinary differential equations into the neural networks. Enforcing these equations effectively adds constraints to the optimization procedure that manifests itself as an imposed structure on the observational data. Using few scattered and noisy measurements, we are able to infer the dynamics of unobserved species, external forcing, and the unknown model parameters. We have successfully tested the algorithm for three different benchmark problems.


Asunto(s)
Aprendizaje Profundo , Biología de Sistemas/métodos , Algoritmos , Modelos Biológicos
17.
Soft Matter ; 18(1): 172-185, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34859251

RESUMEN

Time- and rate-dependent material functions in non-Newtonian fluids in response to different deformation fields pose a challenge in integrating different constitutive models into conventional computational fluid dynamic platforms. Considering their relevance in many industrial and natural settings alike, robust data-driven frameworks that enable accurate modeling of these complex fluids are of great interest. The main goal is to solve the coupled Partial Differential Equations (PDEs) consisting of the constitutive equations that relate the shear stress to the deformation and fully capture the behavior of the fluid under various flow protocols with different boundary conditions. In this work, we present non-Newtonian physics-informed neural networks (nn-PINNs) for solving systems of coupled PDEs adopted for complex fluid flow modeling. The proposed nn-PINN method is employed to solve the constitutive models in conjunction with conservation of mass and momentum by benefiting from Automatic Differentiation (AD) in neural networks, hence avoiding the mesh generation step. nn-PINNs are tested for a number of different complex fluids with different constitutive models and for several flow protocols. These include a range of Generalized Newtonian Fluid (GNF) empirical constitutive models, as well as some phenomenological models with memory effects and thixotropic timescales. nn-PINNs are found to obtain the correct solution of complex fluids in spatiotemporal domains with good accuracy compared to the ground truth solution. We also present applications of nn-PINNs for complex fluid modeling problems with unknown boundary conditions on the surface, and show that our approach can successfully recover the velocity and stress fields across the domain, including the boundaries, given some sparse velocity measurements.

18.
J Chem Phys ; 154(10): 104118, 2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33722055

RESUMEN

Simulating and predicting multiscale problems that couple multiple physics and dynamics across many orders of spatiotemporal scales is a great challenge that has not been investigated systematically by deep neural networks (DNNs). Herein, we develop a framework based on operator regression, the so-called deep operator network (DeepONet), with the long-term objective to simplify multiscale modeling by avoiding the fragile and time-consuming "hand-shaking" interface algorithms for stitching together heterogeneous descriptions of multiscale phenomena. To this end, as a first step, we investigate if a DeepONet can learn the dynamics of different scale regimes, one at the deterministic macroscale and the other at the stochastic microscale regime with inherent thermal fluctuations. Specifically, we test the effectiveness and accuracy of the DeepONet in predicting multirate bubble growth dynamics, which is described by a Rayleigh-Plesset (R-P) equation at the macroscale and modeled as a stochastic nucleation and cavitation process at the microscale by dissipative particle dynamics (DPD). First, we generate data using the R-P equation for multirate bubble growth dynamics caused by randomly time-varying liquid pressures drawn from Gaussian random fields (GRFs). Our results show that properly trained DeepONets can accurately predict the macroscale bubble growth dynamics and can outperform long short-term memory networks. We also demonstrate that the DeepONet can extrapolate accurately outside the input distribution using only very few new measurements. Subsequently, we train the DeepONet with DPD data corresponding to stochastic bubble growth dynamics. Although the DPD data are noisy and we only collect sparse data points on the trajectories, the trained DeepONet model is able to predict accurately the mean bubble dynamics for time-varying GRF pressures. Taken together, our findings demonstrate that DeepONets can be employed to unify the macroscale and microscale models of the multirate bubble growth problem, hence providing new insight into the role of operator regression via DNNs in tackling realistic multiscale problems and in simplifying modeling with heterogeneous descriptions.

19.
Entropy (Basel) ; 23(6)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34202955

RESUMEN

Modeling of wall-bounded turbulent flows is still an open problem in classical physics, with relatively slow progress in the last few decades beyond the log law, which only describes the intermediate region in wall-bounded turbulence, i.e., 30-50 y+ to 0.1-0.2 R+ in a pipe of radius R. Here, we propose a fundamentally new approach based on fractional calculus to model the entire mean velocity profile from the wall to the centerline of the pipe. Specifically, we represent the Reynolds stresses with a non-local fractional derivative of variable-order that decays with the distance from the wall. Surprisingly, we find that this variable fractional order has a universal form for all Reynolds numbers and for three different flow types, i.e., channel flow, Couette flow, and pipe flow. We first use existing databases from direct numerical simulations (DNSs) to lean the variable-order function and subsequently we test it against other DNS data and experimental measurements, including the Princeton superpipe experiments. Taken together, our findings reveal the continuous change in rate of turbulent diffusion from the wall as well as the strong nonlocality of turbulent interactions that intensify away from the wall. Moreover, we propose alternative formulations, including a divergence variable fractional (two-sided) model for turbulent flows. The total shear stress is represented by a two-sided symmetric variable fractional derivative. The numerical results show that this formulation can lead to smooth fractional-order profiles in the whole domain. This new model improves the one-sided model, which is considered in the half domain (wall to centerline) only. We use a finite difference method for solving the inverse problem, but we also introduce the fractional physics-informed neural network (fPINN) for solving the inverse and forward problems much more efficiently. In addition to the aforementioned fully-developed flows, we model turbulent boundary layers and discuss how the streamwise variation affects the universal curve.

20.
Biophys J ; 119(5): 900-912, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814061

RESUMEN

Fibrinogen is regarded as the main glycoprotein in the aggregation of red blood cells (RBCs), a normally occurring phenomenon that has a major impact on blood rheology and hemodynamics, especially under pathological conditions, including type 2 diabetes mellitus (T2DM). In this study, we investigate the fibrinogen-dependent aggregation dynamics of T2DM RBCs through patient-specific predictive computational simulations that invoke key parameters derived from microfluidic experiments. We first calibrate our model parameters at the doublet (a rouleau consisting of two aggregated RBCs) level for healthy blood samples by matching the detaching force required to fully separate RBC doublets with measurements using atomic force microscopy and optical tweezers. Using results from companion microfluidic experiments that also provide in vitro quantitative information on cell-cell adhesive dynamics, we then quantify the rouleau dissociation dynamics at the doublet and multiplet (a rouleau consisting of three or more aggregated RBCs) levels for obese patients with or without T2DM. Specifically, we examine the rouleau breakup rate when it passes through microgates at doublet level and investigate the effect of rouleau alignment in altering its breakup pattern at multiplet level. This study seamlessly integrates in vitro experiments and simulations and consequently enhances our understanding of the complex cell-cell interaction, highlighting the importance of the aggregation and disaggregation dynamics of RBCs in patients at increased risk of microvascular complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Agregación Eritrocitaria , Eritrocitos , Fibrinógeno , Humanos , Pinzas Ópticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA