Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Cell Sci ; 128(1): 15-25, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25433038

RESUMEN

Variation in signaling activity across a cell plays a crucial role in processes such as cell migration. Signaling activity specific to organelles within a cell also likely plays a key role in regulating cellular functions. To understand how such spatially confined signaling within a cell regulates cell behavior, tools that exert experimental control over subcellular signaling activity are required. Here, we discuss the advantages of using optogenetic approaches to achieve this control. We focus on a set of optical triggers that allow subcellular control over signaling through the activation of G-protein-coupled receptors (GPCRs), receptor tyrosine kinases and downstream signaling proteins, as well as those that inhibit endogenous signaling proteins. We also discuss the specific insights with regard to signaling and cell behavior that these subcellular optogenetic approaches can provide.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Humanos
2.
Proc Natl Acad Sci U S A ; 110(17): E1565-74, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23479634

RESUMEN

G-protein-coupled receptor (GPCR) activity gradients evoke important cell behavior but there is a dearth of methods to induce such asymmetric signaling in a cell. Here we achieved reversible, rapidly switchable patterns of spatiotemporally restricted GPCR activity in a single cell. We recruited properties of nonrhodopsin opsins--rapid deactivation, distinct spectral tuning, and resistance to bleaching--to activate native Gi, Gq, or Gs signaling in selected regions of a cell. Optical inputs were designed to spatiotemporally control levels of second messengers, IP3, phosphatidylinositol (3,4,5)-triphosphate, and cAMP in a cell. Spectrally selective imaging was accomplished to simultaneously monitor optically evoked molecular and cellular response dynamics. We show that localized optical activation of an opsin-based trigger can induce neurite initiation, phosphatidylinositol (3,4,5)-triphosphate increase, and actin remodeling. Serial optical inputs to neurite tips can refashion early neuron differentiation. Methods here can be widely applied to program GPCR-mediated cell behaviors.


Asunto(s)
Luz , Neuritas/metabolismo , Opsinas/efectos de la radiación , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de la radiación , AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Opsinas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Imagen de Lapso de Tiempo
3.
Proc Natl Acad Sci U S A ; 110(17): E1575-83, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23569254

RESUMEN

There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein-coupled receptor network control of other cell behaviors.


Asunto(s)
Movimiento Celular/fisiología , Proteínas de Unión al GTP/metabolismo , Luz , Modelos Biológicos , Opsinas de Bastones/metabolismo , Opsinas de Bastones/efectos de la radiación , Transducción de Señal/efectos de la radiación , Animales , Línea Celular , Movimiento Celular/efectos de la radiación , Ratones , Fosfatos de Fosfatidilinositol/metabolismo
4.
Proc Natl Acad Sci U S A ; 109(51): E3568-77, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23213235

RESUMEN

Activation of G-protein heterotrimers by receptors at the plasma membrane stimulates ßγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein ßγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell. We used live cell imaging, mathematical modeling, and in vitro measurements of lipidated fluorescent peptide dissociation from vesicles to determine the mechanistic basis of the intermembrane movement and identify the interactions responsible for differential translocation kinetics in this family of evolutionarily conserved proteins. We found that the reversible translocation is mediated by the limited affinity of the ßγ-subunits for membranes. The differential kinetics of the ßγ-subunit types are determined by variations among a set of basic and hydrophobic residues in the γ-subunit types. G-protein signaling thus leverages the wide variation in membrane dissociation rates among different γ-subunit types to differentially control ßγ-translocation kinetics in response to receptor activation. The conservation of primary structures of γ-subunits across mammalian species suggests that there can be evolutionary selection for primary structures that confer specific membrane-binding affinities and consequent rates of intermembrane movement.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/química , Proteínas de Unión al GTP/química , Membranas Intracelulares/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Dimerización , Colorantes Fluorescentes/química , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HeLa , Humanos , Cinética , Lípidos/química , Microscopía Fluorescente/métodos , Modelos Teóricos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Transducción de Señal
5.
Biophys J ; 107(1): 242-54, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24988358

RESUMEN

G-protein ßγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gßγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory network structure predicts that the translocation rate of a signaling protein can regulate the damping of system oscillation. Here, we examined whether the Gßγ translocation rate regulates calcium oscillations induced by G-protein-coupled receptor activation. Oscillations in HeLa cells expressing γ subunit types with different translocation rates were imaged and quantitated. The results show that differential Gßγ translocation rates can underlie the diversity in damping characteristics of calcium oscillations among cells. Mathematical modeling shows that a translocation embedded motif regulates damping of G-protein-mediated calcium oscillations consistent with experimental data. The current study indicates that such a motif may act as a tuning mechanism to design oscillations with varying damping patterns by using intracellular translocation of a signaling component.


Asunto(s)
Señalización del Calcio , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Modelos Biológicos , Membrana Celular/metabolismo , Retroalimentación Fisiológica , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/química , Células HeLa , Humanos
6.
Proc Natl Acad Sci U S A ; 107(25): 11417-22, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20534534

RESUMEN

We show that receptor induced G protein betagamma subunit translocation from the plasma membrane to the Golgi allows a receptor to initiate fragmentation and regulate secretion. A lung epithelial cell line, A549, was shown to contain an endogenous translocating G protein gamma subunit and exhibit receptor-induced Golgi fragmentation. Receptor-induced Golgi fragmentation was inhibited by a shRNA specific to the endogenous translocating gamma subunit. A kinase defective protein kinase D and a phospholipase C beta inhibitor blocked receptor-induced Golgi fragmentation, suggesting a role for this process in secretion. Consistent with betagamma translocation dependence, fragmentation induced by receptor activation was inhibited by a dominant negative nontranslocating gamma3. Insulin secretion was shown to be induced by muscarinic receptor activation in a pancreatic beta cell line, NIT-1. Induction of insulin secretion was also inhibited by the dominant negative gamma3 subunit consistent with the Golgi fragmentation induced by betagamma complex translocation playing a role in secretion.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Aparato de Golgi/metabolismo , Animales , Línea Celular Tumoral , Genes Dominantes , Humanos , Insulina/metabolismo , Ratones , Microscopía Fluorescente/métodos , Microtúbulos/metabolismo , Fosfolipasa C beta/metabolismo , Proteína Quinasa C/metabolismo , Transporte de Proteínas , Receptores Muscarínicos/metabolismo , Transducción de Señal
7.
Sci Signal ; 9(437): ra71, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27436359

RESUMEN

The transient receptor potential channels (TRPs) respond to chemical irritants and temperature. TRPV1 responds to the itch-inducing endogenous signal histamine, and TRPA1 responds to the itch-inducing chemical chloroquine. We showed that, in sensory neurons, TRPV4 is important for both chloroquine- and histamine-induced itch and that TRPV1 has a role in chloroquine-induced itch. Chloroquine-induced scratching was reduced in mice in which TRPV1 was knocked down or pharmacologically inhibited. Both TRPV4 and TRPV1 were present in some sensory neurons. Pharmacological blockade of either TRPV4 or TRPV1 significantly attenuated the Ca(2+) response of sensory neurons exposed to histamine or chloroquine. Knockout of Trpv1 impaired Ca(2+) responses and reduced scratching behavior evoked by a TRPV4 agonist, whereas knockout of Trpv4 did not alter TRPV1-mediated capsaicin responses. Electrophysiological analysis of human embryonic kidney (HEK) 293 cells coexpressing TRPV4 and TRPV1 revealed that the presence of both channels enhanced the activation kinetics of TRPV4 but not of TRPV1. Biochemical and biophysical studies suggested a close proximity between TRPV4 and TRPV1 in dorsal root ganglion neurons and in cultured cells. Thus, our studies identified TRPV4 as a channel that contributes to both histamine- and chloroquine-induced itch and indicated that the function of TRPV4 in itch signaling involves TRPV1-mediated facilitation. TRP facilitation through the formation of heteromeric complexes could be a prevalent mechanism by which the vast array of somatosensory information is encoded in sensory neurons.


Asunto(s)
Señalización del Calcio , Ganglios Espinales/metabolismo , Prurito/metabolismo , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Prurito/genética , Canales Catiónicos TRPV/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-24741711

RESUMEN

G-protein-coupled receptors (GPCRs) stimulate signaling networks that control a variety of critical physiological processes. Static information on the map of interacting signaling molecules at the basis of many cellular processes exists, but little is known about the dynamic operation of these networks. Here we focus on two questions. First, Is the network architecture underlying GPCR-activated cellular processes unique in comparison with others such as transcriptional networks? We discuss how spatially localized GPCR signaling requires uniquely organized networks to execute polarized cell responses. Second, What approaches overcome challenges in deciphering spatiotemporally dynamic networks that govern cell behavior? We focus on recently developed microfluidic and optical approaches that allow GPCR signaling pathways to be triggered and perturbed with spatially and temporally variant input while simultaneously visualizing molecular and cellular responses. When integrated with mathematical modeling, these approaches can help identify design principles that govern cell responses to extracellular signals. We outline why optical approaches that allow the behavior of a selected cell to be orchestrated continually are particularly well suited for probing network organization in single cells.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Modelos Biológicos
9.
Neuron ; 84(4): 821-34, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25453842

RESUMEN

Central serotonin (5-hydroxytryptophan, 5-HT) modulates somatosensory transduction, but how it achieves sensory modality-specific modulation remains unclear. Here we report that enhancing serotonergic tone via administration of 5-HT potentiates itch sensation, whereas mice lacking 5-HT or serotonergic neurons in the brainstem exhibit markedly reduced scratching behavior. Through pharmacological and behavioral screening, we identified 5-HT1A as a key receptor in facilitating gastrin-releasing peptide (GRP)-dependent scratching behavior. Coactivation of 5-HT1A and GRP receptors (GRPR) greatly potentiates subthreshold, GRP-induced Ca(2+) transients, and action potential firing of GRPR(+) neurons. Immunostaining, biochemical, and biophysical studies suggest that 5-HT1A and GRPR may function as receptor heteromeric complexes. Furthermore, 5-HT1A blockade significantly attenuates, whereas its activation contributes to, long-lasting itch transmission. Thus, our studies demonstrate that the descending 5-HT system facilitates GRP-GRPR signaling via 5-HT1A to augment itch-specific outputs, and a disruption of crosstalk between 5-HT1A and GRPR may be a useful antipruritic strategy.


Asunto(s)
Péptido Liberador de Gastrina/metabolismo , Prurito/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Receptores de Bombesina/metabolismo , Transducción de Señal/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Señalización del Calcio/fisiología , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Prurito/fisiopatología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo
10.
Cell Signal ; 23(5): 785-93, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21238584

RESUMEN

Cellular senescence is a process wherein proliferating cells undergo permanent cell cycle arrest while remaining viable. Senescence results in enhanced secretion of proteins that promote cancer and inflammation. We report here that the structure of the Golgi complex which regulates secretion is altered in senescent cells. In cells where senescence is achieved by replicative exhaustion or in cells wherein senescence has been induced with BrdU treatment dependent stress, the Golgi complex is dispersed. The expression of a G protein γ subunit, γ11, capable of translocation from the plasma membrane to the Golgi complex on receptor activation increases with senescence. Knockdown of γ11 or overexpression of a dominant negative γ3 subunit inhibits Golgi dispersal induced by senescence. Overall these results suggest that in cellular senescence an upregulated G protein gamma subunit mediates alterations in the structure of the Golgi.


Asunto(s)
Senescencia Celular , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Aparato de Golgi/ultraestructura , Bromodesoxiuridina/farmacología , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/fisiología , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Interleucina-8/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA