Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 18(12): 2478-2491, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31591261

RESUMEN

Typical analyses of mass spectrometry data only identify amino acid sequences that exist in reference databases. This restricts the possibility of discovering new peptides such as those that contain uncharacterized mutations or originate from unexpected processing of RNAs and proteins. De novo peptide sequencing approaches address this limitation but often suffer from low accuracy and require extensive validation by experts. Here, we develop SMSNet, a deep learning-based de novo peptide sequencing framework that achieves >95% amino acid accuracy while retaining good identification coverage. Applications of SMSNet on landmark proteomics and peptidomics studies reveal over 10,000 previously uncharacterized HLA antigens and phosphopeptides, and in conjunction with database-search methods, expand the coverage of peptide identification by almost 30%. The power to accurately identify new peptides of SMSNet would make it an invaluable tool for any future proteomics and peptidomics studies, including tumor neoantigen discovery, antibody sequencing, and proteome characterization of non-model organisms.


Asunto(s)
Aprendizaje Profundo , Péptidos/análisis , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Conjuntos de Datos como Asunto , Antígenos HLA/análisis , Humanos , Fosfopéptidos/análisis , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA