Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cell ; 185(11): 1943-1959.e21, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35545089

RESUMEN

Parthanatos-associated apoptosis-inducing factor (AIF) nuclease (PAAN), also known as macrophage migration inhibitor factor (MIF), is a member of the PD-D/E(X)K nucleases that acts as a final executioner in parthanatos. PAAN's role in Parkinson's disease (PD) and whether it is amenable to chemical inhibition is not known. Here, we show that neurodegeneration induced by pathologic α-synuclein (α-syn) occurs via PAAN/MIF nuclease activity. Genetic depletion of PAAN/MIF and a mutant lacking nuclease activity prevent the loss of dopaminergic neurons and behavioral deficits in the α-syn preformed fibril (PFF) mouse model of sporadic PD. Compound screening led to the identification of PAANIB-1, a brain-penetrant PAAN/MIF nuclease inhibitor that prevents neurodegeneration induced by α-syn PFF, AAV-α-syn overexpression, or MPTP intoxication in vivo. Our findings could have broad relevance in human pathologies where parthanatos plays a role in the development of cell death inhibitors targeting the druggable PAAN/MIF nuclease.


Asunto(s)
Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Enfermedad de Parkinson , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Endonucleasas/metabolismo , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
2.
PLoS Genet ; 19(1): e1010558, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36626371

RESUMEN

Copper (Cu) has a multifaceted role in brain development, function, and metabolism. Two homologous Cu transporters, Atp7a (Menkes disease protein) and Atp7b (Wilson disease protein), maintain Cu homeostasis in the tissue. Atp7a mediates Cu entry into the brain and activates Cu-dependent enzymes, whereas the role of Atp7b is less clear. We show that during postnatal development Atp7b is necessary for normal morphology and function of choroid plexus (ChPl). Inactivation of Atp7b causes reorganization of ChPl' cytoskeleton and cell-cell contacts, loss of Slc31a1 from the apical membrane, and a decrease in the length and number of microvilli and cilia. In ChPl lacking Atp7b, Atp7a is upregulated but remains intracellular, which limits Cu transport into the brain and results in significant Cu deficit, which is reversed only in older animals. Cu deficiency is associated with down-regulation of Atp7a in locus coeruleus and catecholamine imbalance, despite normal expression of dopamine-ß-hydroxylase. In addition, there are notable changes in the brain lipidome, which can be attributed to inhibition of diacylglyceride-to-phosphatidylethanolamine conversion. These results identify the new role for Atp7b in developing brain and identify metabolic changes that could be exacerbated by Cu chelation therapy.


Asunto(s)
Cobre , Síndrome del Pelo Ensortijado , Ratones , Animales , ATPasas Transportadoras de Cobre , Cobre/metabolismo , Plexo Coroideo/metabolismo , Síndrome del Pelo Ensortijado/metabolismo , Encéfalo/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(15): e2118819119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394877

RESUMEN

In idiopathic Parkinson's disease (PD), pathologic αSyn aggregates drive oxidative and nitrative stress that may cause genomic and mitochondrial DNA damage. These events are associated with activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) immune pathway, but it is not known whether STING is activated in or contributes to α-synucleinopathies. Herein, we used primary cell cultures and the intrastriatal αSyn preformed fibril (αSyn-PFF) mouse model of PD to demonstrate that αSyn pathology causes STING-dependent neuroinflammation and dopaminergic neurodegeneration. In microglia-astrocyte cultures, αSyn-PFFs induced DNA double-strand break (DSB) damage response signaling (γH2A.X), as well as TBK1 activation that was blocked by STING inhibition. In the αSyn-PFF mouse model, we similarly observed TBK1 activation and increased γH2A.X within striatal microglia prior to the onset of dopaminergic neurodegeneration. Using STING-deficient (Stinggt) mice, we demonstrated that striatal interferon activation in the α-Syn PFF model is STING-dependent. Furthermore, Stinggt mice were protected from α-Syn PFF-induced motor deficits, pathologic αSyn accumulation, and dopaminergic neuron loss. We also observed upregulation of STING protein in the substantia nigra pars compacta (SNpc) of human PD patients that correlated significantly with pathologic αSyn accumulation. STING was similarly upregulated in microglia cultures treated with αSyn-PFFs, which primed the pathway to mount stronger interferon responses when exposed to a STING agonist. Our results suggest that microglial STING activation contributes to both the neuroinflammation and neurodegeneration arising from α-synucleinopathies, including PD.


Asunto(s)
Interferón Tipo I , Proteínas de la Membrana , Enfermedad de Parkinson , Sinucleinopatías , Animales , Neuronas Dopaminérgicas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Enfermedades Neurodegenerativas , Enfermedades Neuroinflamatorias , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Sinucleinopatías/genética
4.
Proc Natl Acad Sci U S A ; 119(16): e2200545119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412917

RESUMEN

Cocaine exerts its stimulant effect by inhibiting dopamine (DA) reuptake, leading to increased dopamine signaling. This action is thought to reflect the binding of cocaine to the dopamine transporter (DAT) to inhibit its function. However, cocaine is a relatively weak inhibitor of DAT, and many DAT inhibitors do not share cocaine's behavioral actions. Further, recent reports show more potent actions of the drug, implying the existence of a high-affinity receptor for cocaine. We now report high-affinity binding of cocaine associated with the brain acid soluble protein 1 (BASP1) with a dissociation constant (Kd) of 7 nM. Knocking down BASP1 in the striatum inhibits [3H]cocaine binding to striatal synaptosomes. Depleting BASP1 in the nucleus accumbens but not the dorsal striatum diminishes locomotor stimulation in mice. Our findings imply that BASP1 is a pharmacologically relevant receptor for cocaine.


Asunto(s)
Proteínas de Unión a Calmodulina , Proteínas Portadoras , Cocaína , Proteínas del Citoesqueleto , Proteínas del Tejido Nervioso , Receptores de Droga , Animales , Sitios de Unión , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cocaína/metabolismo , Cocaína/farmacología , Cuerpo Estriado/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Técnicas de Sustitución del Gen , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ratas , Receptores de Droga/genética , Receptores de Droga/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(36): e2204835119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36044549

RESUMEN

Physical activity provides clinical benefit in Parkinson's disease (PD). Irisin is an exercise-induced polypeptide secreted by skeletal muscle that crosses the blood-brain barrier and mediates certain effects of exercise. Here, we show that irisin prevents pathologic α-synuclein (α-syn)-induced neurodegeneration in the α-syn preformed fibril (PFF) mouse model of sporadic PD. Intravenous delivery of irisin via viral vectors following the stereotaxic intrastriatal injection of α-syn PFF cause a reduction in the formation of pathologic α-syn and prevented the loss of dopamine neurons and lowering of striatal dopamine. Irisin also substantially reduced the α-syn PFF-induced motor deficits as assessed behaviorally by the pole and grip strength test. Recombinant sustained irisin treatment of primary cortical neurons attenuated α-syn PFF toxicity by reducing the formation of phosphorylated serine 129 of α-syn and neuronal cell death. Tandem mass spectrometry and biochemical analysis revealed that irisin reduced pathologic α-syn by enhancing endolysosomal degradation of pathologic α-syn. Our findings highlight the potential for therapeutic disease modification of irisin in PD.


Asunto(s)
Cuerpo Estriado , Fibronectinas , Enfermedad de Parkinson , alfa-Sinucleína , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Fibronectinas/administración & dosificación , Fibronectinas/genética , Fibronectinas/metabolismo , Ratones , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
6.
J Neurosci ; 42(49): 9263-9277, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36280265

RESUMEN

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). In this study, we generated a transgenic model by crossing germline Parkin-/- mice with PolgAD257A mice, an established model of premature aging and mitochondrial stress. We hypothesized that loss of Parkin-/- in PolgAD257A/D257A mice would exacerbate mitochondrial dysfunction, leading to loss of dopamine neurons and nigral-striatal specific neurobehavioral motor dysfunction. We found that aged Parkin-/-/PolgAD257A/D257A male and female mice exhibited severe behavioral deficits, nonspecific to the nigral-striatal pathway, with neither dopaminergic neurodegeneration nor reductions in striatal dopamine. We saw no difference in expression levels of nuclear-encoded subunits of mitochondrial markers and mitochondrial Complex I and IV activities, although we did observe substantial reductions in mitochondrial-encoded COX41I, indicating mitochondrial dysfunction as a result of PolgAD257A/D257A mtDNA mutations. Expression levels of mitophagy markers LC3I/LC3II remained unchanged between cohorts, suggesting no overt mitophagy defects. Expression levels of the parkin substrates, VDAC, NLRP3, and AIMP2 remained unchanged, suggesting no parkin dysfunction. In summary, we were unable to observe dopaminergic neurodegeneration with corresponding nigral-striatal neurobehavioral deficits, nor Parkin or mitochondrial dysfunction in Parkin-/-/PolgAD257A/D257A mice. These findings support a lack of synergism of Parkin loss on mitochondrial dysfunction in mouse models of mitochondrial deficits.SIGNIFICANCE STATEMENT Producing a mouse model of Parkinson's disease (PD) that is etiologically relevant, recapitulates clinical hallmarks, and exhibits reproducible results is crucial to understanding the underlying pathology and in developing disease-modifying therapies. Here, we show that Parkin-/-/PolgAD257A/D257A mice, a previously reported PD mouse model, fails to reproduce a Parkinsonian phenotype. We show that these mice do not display dopaminergic neurodegeneration nor nigral-striatal-dependent motor deficits. Furthermore, we report that Parkin loss does not synergize with mitochondrial dysfunction. Our results demonstrate that Parkin-/-/PolgAD257A/D257A mice are not a reliable model for PD and adds to a growing body of work demonstrating that Parkin loss does not synergize with mitochondrial dysfunction in mouse models of mitochondrial deficits.


Asunto(s)
Modelos Animales de Enfermedad , Dopamina , Mitocondrias , Enfermedad de Parkinson , Ubiquitina-Proteína Ligasas , Animales , Femenino , Masculino , Ratones , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , ADN Polimerasa gamma/genética , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Stroke ; 53(5): 1802-1812, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35354299

RESUMEN

Cerebral ischemia and reperfusion initiate cellular events in brain that lead to neurological disability. Investigating these cellular events provides ample targets for developing new treatments. Despite considerable work, no such therapy has translated into successful stroke treatment. Among other issues-such as incomplete mechanistic knowledge and faulty clinical trial design-a key contributor to prior translational failures may be insufficient scientific rigor during preclinical assessment: nonblinded outcome assessment; missing randomization; inappropriate sample sizes; and preclinical assessments in young male animals that ignore relevant biological variables, such as age, sex, and relevant comorbid diseases. Promising results are rarely replicated in multiple laboratories. We sought to address some of these issues with rigorous assessment of candidate treatments across 6 independent research laboratories. The Stroke Preclinical Assessment Network (SPAN) implements state-of-the-art experimental design to test the hypothesis that rigorous preclinical assessment can successfully reduce or eliminate common sources of bias in choosing treatments for evaluation in clinical studies. SPAN is a randomized, placebo-controlled, blinded, multilaboratory trial using a multi-arm multi-stage protocol to select one or more putative stroke treatments with an implied high likelihood of success in human clinical stroke trials. The first stage of SPAN implemented procedural standardization and experimental rigor. All participating research laboratories performed middle cerebral artery occlusion surgery adhering to a common protocol and rapidly enrolled 913 mice in the first of 4 planned stages with excellent protocol adherence, remarkable data completion and low rates of subject loss. SPAN stage 1 successfully implemented treatment masking, randomization, prerandomization inclusion/exclusion criteria, and blinded assessment to exclude bias. Our data suggest that a large, multilaboratory, preclinical assessment effort to reduce known sources of bias is feasible and practical. Subsequent SPAN stages will evaluate candidate treatments for potential success in future stroke clinical trials using aged animals and animals with comorbid conditions.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Anciano , Animales , Encéfalo , Isquemia Encefálica/terapia , Estudios de Factibilidad , Humanos , Infarto de la Arteria Cerebral Media/terapia , Masculino , Ratones , Accidente Cerebrovascular/terapia
8.
Proc Natl Acad Sci U S A ; 115(7): 1635-1640, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29386392

RESUMEN

Mutations in LRRK2 are known to be the most common genetic cause of sporadic and familial Parkinson's disease (PD). Multiple lines of LRRK2 transgenic or knockin mice have been developed, yet none exhibit substantial dopamine (DA)-neuron degeneration. Here we develop human tyrosine hydroxylase (TH) promoter-controlled tetracycline-sensitive LRRK2 G2019S (GS) and LRRK2 G2019S kinase-dead (GS/DA) transgenic mice and show that LRRK2 GS expression leads to an age- and kinase-dependent cell-autonomous neurodegeneration of DA and norepinephrine (NE) neurons. Accompanying the loss of DA neurons are DA-dependent behavioral deficits and α-synuclein pathology that are also LRRK2 GS kinase-dependent. Transmission EM reveals that that there is an LRRK2 GS kinase-dependent significant reduction in synaptic vesicle number and a greater abundance of clathrin-coated vesicles in DA neurons. These transgenic mice indicate that LRRK2-induced DA and NE neurodegeneration is kinase-dependent and can occur in a cell-autonomous manner. Moreover, these mice provide a substantial advance in animal model development for LRRK2-associated PD and an important platform to investigate molecular mechanisms for how DA neurons degenerate as a result of expression of mutant LRRK2.


Asunto(s)
Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/fisiología , Enfermedades Neurodegenerativas/patología , Norepinefrina/metabolismo , Factores de Edad , Animales , Conducta Animal , Neuronas Dopaminérgicas/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Actividad Motora , Mutación , Enfermedades Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(4): 798-803, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311330

RESUMEN

Accumulating evidence suggests that α-synuclein (α-syn) occurs physiologically as a helically folded tetramer that resists aggregation. However, the mechanisms underlying the regulation of formation of α-syn tetramers are still mostly unknown. Cellular membrane lipids are thought to play an important role in the regulation of α-syn tetramer formation. Since glucocerebrosidase 1 (GBA1) deficiency contributes to the aggregation of α-syn and leads to changes in neuronal glycosphingolipids (GSLs) including gangliosides, we hypothesized that GBA1 deficiency may affect the formation of α-syn tetramers. Here, we show that accumulation of GSLs due to GBA1 deficiency decreases α-syn tetramers and related multimers and increases α-syn monomers in CRISPR-GBA1 knockout (KO) SH-SY5Y cells. Moreover, α-syn tetramers and related multimers are decreased in N370S GBA1 Parkinson's disease (PD) induced pluripotent stem cell (iPSC)-derived human dopaminergic (hDA) neurons and murine neurons carrying the heterozygous L444P GBA1 mutation. Treatment with miglustat to reduce GSL accumulation and overexpression of GBA1 to augment GBA1 activity reverse the destabilization of α-syn tetramers and protect against α-syn preformed fibril-induced toxicity in hDA neurons. Taken together, these studies provide mechanistic insights into how GBA1 regulates the transition from monomeric α-syn to α-syn tetramers and multimers and suggest unique therapeutic opportunities for PD and dementia with Lewy bodies.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Glucosilceramidasa/deficiencia , Glicoesfingolípidos/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , 1-Desoxinojirimicina/análogos & derivados , Línea Celular Tumoral , Glucosilceramidasa/genética , Humanos , Multimerización de Proteína
10.
FASEB J ; 33(12): 14734-14747, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31689372

RESUMEN

Cytokines and chemokines play diverse roles in different organ systems. Family with sequence similarity 19, member A1-5 (FAM19A1-A5; also known as TAFA1-5) is a group of conserved chemokine-like proteins enriched in the CNS of mice and humans. Their functions are only beginning to emerge. Here, we show that the expression of Fam19a1-a5 in different mouse brain regions are induced or suppressed by unfed and refed states. The striking nutritional regulation of Fam19a family members in the brain suggests a potential central role in regulating metabolism. Using a knockout (KO) mouse model, we show that loss of FAM19A1 results in sexually dimorphic phenotypes. In male mice, FAM19A1 deficiency alters food intake patterns during the light and dark cycle. Fam19a1 KO mice are hyperactive, and locomotor hyperactivity is more pronounced in female KO mice. Behavior tests indicate that Fam19a1 KO female mice have reduced anxiety and sensitivity to pain. Spatial learning and exploration, however, is preserved in Fam19a1 KO mice. Altered behaviors are associated with elevated norepinephrine and dopamine turnover in the striatum. Our results establish an in vivo function of FAM19A1 and highlight central roles for this family of neurokines in modulating animal physiology and behavior.-Lei, X., Liu, L., Terrillion, C. E., Karuppagounder, S. S., Cisternas, P., Lay, M., Martinelli, D. C., Aja, S., Dong, X., Pletnikov, M. V., Wong, G. W. FAM19A1, a brain-enriched and metabolically responsive neurokine, regulates food intake patterns and mouse behaviors.


Asunto(s)
Quimiocinas/fisiología , Cuerpo Estriado/metabolismo , Ingestión de Alimentos , Locomoción , Aprendizaje Espacial , Animales , Células Cultivadas , Quimiocinas/genética , Dopamina/metabolismo , Conducta Exploratoria , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Norepinefrina/metabolismo , Ratas , Factores Sexuales
11.
Brain ; 142(8): 2380-2401, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31237944

RESUMEN

α-Synuclein misfolding and aggregation plays a major role in the pathogenesis of Parkinson's disease. Although loss of function mutations in the ubiquitin ligase, parkin, cause autosomal recessive Parkinson's disease, there is evidence that parkin is inactivated in sporadic Parkinson's disease. Whether parkin inactivation is a driver of neurodegeneration in sporadic Parkinson's disease or a mere spectator is unknown. Here we show that parkin in inactivated through c-Abelson kinase phosphorylation of parkin in three α-synuclein-induced models of neurodegeneration. This results in the accumulation of parkin interacting substrate protein (zinc finger protein 746) and aminoacyl tRNA synthetase complex interacting multifunctional protein 2 with increased parkin interacting substrate protein levels playing a critical role in α-synuclein-induced neurodegeneration, since knockout of parkin interacting substrate protein attenuates the degenerative process. Thus, accumulation of parkin interacting substrate protein links parkin inactivation and α-synuclein in a common pathogenic neurodegenerative pathway relevant to both sporadic and familial forms Parkinson's disease. Thus, suppression of parkin interacting substrate protein could be a potential therapeutic strategy to halt the progression of Parkinson's disease and related α-synucleinopathies.


Asunto(s)
Enfermedad de Parkinson/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Enfermedad de Parkinson/patología
12.
Proc Natl Acad Sci U S A ; 111(28): 10209-14, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24987120

RESUMEN

Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated "parthanatos" in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD(+) and energetic collapse, which have been thought to be caused by the consumption of cellular NAD(+) by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD(+) depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD(+) depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1-mediated mitochondrial dysfunction. Depleting neurons of NAD(+) with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase.


Asunto(s)
Corteza Cerebral/enzimología , Glucólisis/fisiología , Mitocondrias/enzimología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/enzimología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Acrilamidas/farmacología , Animales , Células Cultivadas , Corteza Cerebral/citología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Glucosa/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucólisis/efectos de los fármacos , Hexoquinasa/metabolismo , Metilnitronitrosoguanidina/farmacología , Ratones , NAD/metabolismo , Neuronas/citología , Piperidinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1
13.
Stem Cell Reports ; 19(1): 54-67, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38134925

RESUMEN

Interspecies chimeras offer great potential for regenerative medicine and the creation of human disease models. Whether human pluripotent stem cell-derived neurons in an interspecies chimera can differentiate into functional neurons and integrate into host neural circuity is not known. Here, we show, using Engrailed 1 (En1) as a development niche, that human naive-like embryonic stem cells (ESCs) can incorporate into embryonic and adult mouse brains. Human-derived neurons including tyrosine hydroxylase (TH)+ neurons integrate into the mouse brain at low efficiency. These TH+ neurons have electrophysiologic properties consistent with their human origin. In addition, these human-derived neurons in the mouse brain accumulate pathologic phosphorylated α-synuclein in response to α-synuclein preformed fibrils. Optimization of human/mouse chimeras could be used to study human neuronal differentiation and human brain disorders.


Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Pluripotentes , Adulto , Humanos , Ratones , Animales , Neuronas Dopaminérgicas , alfa-Sinucleína , Quimerismo , Diferenciación Celular/fisiología
14.
Nat Commun ; 15(1): 4663, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821932

RESUMEN

Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid ß precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.


Asunto(s)
Proteína del Gen 3 de Activación de Linfocitos , alfa-Sinucleína , Animales , Femenino , Humanos , Masculino , Ratones , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Unión Proteica
15.
Synapse ; 67(11): 741-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23620198

RESUMEN

Phosphodiesterases (PDEs) belong to a family of proteins that control metabolism of cyclic nucleotides. Targeting PDE5, for enhancing cellular function, is one of the therapeutic strategies for male erectile dysfunction. We have investigated whether in vivo inhibition of PDE5, which is expressed in several brain regions, will enhance memory and synaptic transmission in the hippocampus of healthy mice. We have found that acute administration of sildenafil, a specific PDE5 inhibitor, enhanced hippocampus-dependent memory tasks. To elucidate the underlying mechanism in the memory enhancement, effects of sildenafil on long-term potentiation (LTP) were measured. The level of LTP was significantly elevated, with concomitant increases in basal synaptic transmission, in mice treated with sildenafil (1 mg/kg/day) for 15 days compared to control mice. These results suggest that moderate PDE5 inhibition enhances memory by increasing synaptic plasticity and transmission in the hippocampus.


Asunto(s)
Potenciación a Largo Plazo/efectos de los fármacos , Memoria/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Piperazinas/farmacología , Sulfonas/farmacología , Animales , Potenciales Postsinápticos Excitadores , Hipocampo/citología , Hipocampo/fisiología , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Purinas/farmacología , Citrato de Sildenafil
16.
Neurochem Res ; 38(10): 2084-94, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23918203

RESUMEN

Methamphetamine epidemic has a broad impact on world's health care system. Its abusive potential and neurotoxic effects remain a challenge for the anti-addiction therapies. In addition to oxidative stress, mitochondrial dysfunction and apoptosis, excitotoxicity is also involved in methamphetamine induced neurotoxicity. The N-methyl-D-aspartate (NMDA) type of glutamate receptor is thought to be one of the predominant mediators of excitotoxicity. There is growing evidence that NMDA receptor antagonists could be one of the therapeutic options to manage excitotoxicity. Amantadine, a well-tolerated and modestly effective antiparkinsonian agent, was found to possess NMDA antagonistic properties and has shown to release dopamine from the nerve terminals. The current study aimed to evaluate the effect of amantadine pre-treatment against methamphetamine induced neurotoxicity. Results showed that methamphetamine treatment had depleted striatal dopamine, generated of reactive oxygen species and decreased activity of complex I in the mitochondria. Interestingly, amantadine, at high dose (10 mg/kg), did not prevent dopamine depletion moreover it exacerbated the behavioral manifestations of methamphetamine toxicity such as akinesia and catalepsy. Only lower dose of amantadine (1 mg/kg) produced significant scavenging of the reactive oxygen species induced by methamphetamine. Overall results from the present study suggest that amantadine should not be used concomitantly with methamphetamine as it may results in excessive neurotoxicity.


Asunto(s)
Amantadina/uso terapéutico , Metanfetamina/envenenamiento , Síndromes de Neurotoxicidad/tratamiento farmacológico , Animales , Conducta Animal/efectos de los fármacos , Catalepsia/inducido químicamente , Dopamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Mitocondriales/inducido químicamente , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Serotonina/metabolismo , Superóxido Dismutasa/metabolismo
17.
Cell Mol Life Sci ; 69(5): 829-41, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22033836

RESUMEN

In the developing brain, nicotinic acetylcholine receptors (nAChRs) are involved in cell survival, targeting, formation of neural and sensory circuits, and development and maturation of other neurotransmitter systems. This regulatory role is disrupted when the developing brain is exposed to nicotine, which occurs with tobacco use during pregnancy. Prenatal nicotine exposure has been shown to be a strong risk factor for memory deficits and other behavioral aberrations in the offspring. The molecular mechanisms underlying these neurobehavioral outcomes are not clearly elucidated. We used a rodent model to assess behavioral, neurophysiological, and neurochemical consequences of prenatal nicotine exposure in rat offspring with specific emphasis on the hippocampal glutamatergic system. Pregnant dams were infused with nicotine (6 mg/kg/day) subcutaneously from the third day of pregnancy until birth. Results indicate that prenatal nicotine exposure leads to increased anxiety and depressive-like effects and impaired spatial memory. Synaptic plasticity in the form of long-term potentiation (LTP), basal synaptic transmission, and AMPA receptor-mediated synaptic currents were reduced. The deficit in synaptic plasticity was paralleled by declines in protein levels of vesicular glutamate transporter 1 (VGLUT1), synaptophysin, AMPA receptor subunit GluR1, phospho(Ser845) GluR1, and postsynaptic density 95 (PSD-95). These results suggest that prenatal nicotine exposure by maternal smoking could result in alterations in the glutamatergic system in the hippocampus contributing to the abnormal neurobehavioral outcomes.


Asunto(s)
Conducta Animal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Nicotina/toxicidad , Receptores de Glutamato/metabolismo , Animales , Electrofisiología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/biosíntesis
18.
Proc Natl Acad Sci U S A ; 107(38): 16691-6, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20823226

RESUMEN

Mutations in PARK2/Parkin, which encodes a ubiquitin E3 ligase, cause autosomal recessive Parkinson disease (PD). Here we show that the nonreceptor tyrosine kinase c-Abl phosphorylates tyrosine 143 of parkin, inhibiting parkin's ubiquitin E3 ligase activity and protective function. c-Abl is activated by dopaminergic stress and by dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium (MPP(+)) in vitro and in vivo by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), leading to parkin inactivation, accumulation of the parkin substrates aminoacyl-tRNA synthetase-interacting multifunctional protein type 2 (AIMP2) (p38/JTV-1) and fuse-binding protein 1 (FBP1), and cell death. STI-571, a c-Abl-family kinase inhibitor, prevents the phosphorylation of parkin, maintaining parkin in a catalytically active and protective state. STI-571's protective effects require parkin, as shRNA knockdown of parkin prevents STI-571 protection. Conditional knockout of c-Abl in the nervous system also prevents the phosphorylation of parkin, the accumulation of its substrates, and subsequent neurotoxicity in response to MPTP intoxication. In human postmortem PD brain, c-Abl is active, parkin is tyrosine-phosphorylated, and AIMP2 and FBP1 accumulate in the substantia nigra and striatum. Thus, tyrosine phosphorylation of parkin by c-Abl is a major posttranslational modification that inhibits parkin function, possibly contributing to pathogenesis of sporadic PD. Moreover, inhibition of c-Abl may be a neuroprotective approach in the treatment of PD.


Asunto(s)
Proteínas Proto-Oncogénicas c-abl/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Muerte Celular , Línea Celular , Dopamina/metabolismo , Técnicas de Inactivación de Genes , Humanos , Técnicas In Vitro , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Neuronas/citología , Neuronas/metabolismo , Células PC12 , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fosforilación , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
19.
Sci Transl Med ; 15(679): eabp9352, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652533

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease of the central nervous system, with an estimated 5,000,000 cases worldwide. PD pathology is characterized by the accumulation of misfolded α-synuclein, which is thought to play a critical role in the pathogenesis of the disease. Animal models of PD suggest that activation of Abelson tyrosine kinase (c-Abl) plays an essential role in the initiation and progression of α-synuclein pathology and initiates processes leading to degeneration of dopaminergic and nondopaminergic neurons. Given the potential role of c-Abl in PD, a c-Abl inhibitor library was developed to identify orally bioavailable c-Abl inhibitors capable of crossing the blood-brain barrier based on predefined characteristics, leading to the discovery of IkT-148009. IkT-148009, a brain-penetrant c-Abl inhibitor with a favorable toxicology profile, was analyzed for therapeutic potential in animal models of slowly progressive, α-synuclein-dependent PD. In mouse models of both inherited and sporadic PD, IkT-148009 suppressed c-Abl activation to baseline and substantially protected dopaminergic neurons from degeneration when administered therapeutically by once daily oral gavage beginning 4 weeks after disease initiation. Recovery of motor function in PD mice occurred within 8 weeks of initiating treatment concomitantly with a reduction in α-synuclein pathology in the mouse brain. These findings suggest that IkT-148009 may have potential as a disease-modifying therapy in PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Sinucleinopatías , Ratones , Animales , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Enfermedades Neurodegenerativas/patología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo
20.
Sci Transl Med ; 15(724): eadd0499, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019930

RESUMEN

Pathologic α-synuclein plays an important role in the pathogenesis of α-synucleinopathies such as Parkinson's disease (PD). Disruption of proteostasis is thought to be central to pathologic α-synuclein toxicity; however, the molecular mechanism of this deregulation is poorly understood. Complementary proteomic approaches in cellular and animal models of PD were used to identify and characterize the pathologic α-synuclein interactome. We report that the highest biological processes that interacted with pathologic α-synuclein in mice included RNA processing and translation initiation. Regulation of catabolic processes that include autophagy were also identified. Pathologic α-synuclein was found to bind with the tuberous sclerosis protein 2 (TSC2) and to trigger the activation of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which augmented mRNA translation and protein synthesis, leading to neurodegeneration. Genetic and pharmacologic inhibition of mTOR and protein synthesis rescued the dopamine neuron loss, behavioral deficits, and aberrant biochemical signaling in the α-synuclein preformed fibril mouse model and Drosophila transgenic models of pathologic α-synuclein-induced degeneration. Pathologic α-synuclein furthermore led to a destabilization of the TSC1-TSC2 complex, which plays an important role in mTORC1 activity. Constitutive overexpression of TSC2 rescued motor deficits and neuropathology in α-synuclein flies. Biochemical examination of PD postmortem brain tissues also suggested deregulated mTORC1 signaling. These findings establish a connection between mRNA translation deregulation and mTORC1 pathway activation that is induced by pathologic α-synuclein in cellular and animal models of PD.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratones , alfa-Sinucleína/metabolismo , Modelos Animales de Enfermedad , Mamíferos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Enfermedad de Parkinson/metabolismo , Proteómica , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA