Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(3): 1713-1722, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37851851

RESUMEN

BACKGROUND: This study aimed to determine the effect of various amounts of dried apple pomace (AP) powder and calcium ions on selected physicochemical properties of restructured freeze-dried snacks in comparison with products obtained with low-methoxyl pectin (LMP). The material was prepared using frozen carrot, orange concentrate, ginger, water, and various concentrations of AP (1, 3, 5%) and calcium lactate (0, 0.01, 0.05%). The reference samples were without additives, and with 0.5 or 1.5% of LMP combined with 0.01% of calcium lactate. RESULTS: The material was studied in terms of water content and activity, hygroscopic properties, structure, texture, color, and polyphenol content (TPC), and antioxidant activity. The addition of AP resulted in reducing water activity and porosity. As a consequence of the increasing density of the structure, the reduction of hygroscopic properties by up to 16% followed the increasing amount of AP. Apple pomace and calcium ions strengthened the structure. The addition of 3% and 5% of AP gave a hardening effect close to or better than 0.5% LMP. Because of the pigment dilution, LMP caused significantly greater total color change than AP. The incorporation of AP also increased TPC and enhanced antioxidant activity in comparison with the reference materials by up to 18%. CONCLUSION: The results showed that dried AP powder can be applied successfully as an additive enhancing stability, texture and bioactive compound content, thus fortifying the physicochemical properties of restructured freeze-dried fruit and vegetable snacks. © 2023 Society of Chemical Industry.


Asunto(s)
Citrus sinensis , Daucus carota , Malus , Zingiber officinale , Malus/química , Antioxidantes/análisis , Polvos , Calcio , Bocadillos , Polifenoles/análisis , Agua , Iones
2.
J Food Sci Technol ; 61(7): 1363-1373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38910920

RESUMEN

Consumers seek healthy and sustainable products, whereas the food industry faces the challenge of processing by-products management. The application of fruit pomace as an additive could be a solution addressing the needs of both consumers and producers. The research objective has been to assess the effect of dried blackcurrant pomace powder (BP) and calcium ions in varied concentration on the physicochemical properties of multicomponent freeze-dried snacks as compared to the influence of low-methoxyl pectin (LMP). The snacks were prepared using varied content of BP (1, 3, 5%) and calcium lactate (0, 0.01, 0.05%). Water content and activity, hygroscopic properties, structure, texture, colour, polyphenols content (TPC), and antioxidant activity were analysed. The addition of BP resulted in lowering water activity and porosity. The microstructure of the snacks consisted of a large number of small and unevenly distributed pores. Consequently, the reduction of hygroscopic properties with the growing amount of BP was observed. Applied additives strengthened the structure and caused changes in compression curves indicating enhanced hardness and crispiness. The effect given by 5% of BP was comparable to that obtained with 0.5% of LMP. Additionally, blackcurrant pomace infusion increased TPC and enhanced antioxidant activity but it also caused significant changes in the colour of the snacks. Overall, obtained results have shown that dried blackcurrant pomace powder (BP) can be successfully applied as a food additive supporting stability, texture, and bioactive compounds content, thus fortifying the physicochemical properties of freeze-dried fruit and vegetable snacks.

3.
Molecules ; 28(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37375181

RESUMEN

Highly methylated apple pectin (HMAP) and pork gelatin (PGEL) have been proposed as gelling agents for pumpkin purée-based films. Therefore, this research aimed to develop and evaluate the physiochemical properties of composite vegetable films. Granulometric analysis of film-forming solutions showed a bimodal particle size distribution, with two peaks near 25 µm and close to 100 µm in the volume distribution. The diameter D4.3, which is very sensitive to the presence of large particles, was only about 80 µm. Taking into account the possibility of creating a polymer matrix from pumpkin purée, its chemical characteristic was determined. The content of water-soluble pectin was about 0.2 g/100 g fresh mass, starch at the level of 5.5 g/100 g fresh mass, and protein at the level of about 1.4 g/100 g fresh mass. Glucose, fructose, and sucrose, the content of which ranged from about 1 to 1.4 g/100 g fresh mass, were responsible for the plasticizing effect of the purée. All of the tested composite films, based on selected hydrocolloids with the addition of pumpkin purée, were characterized by good mechanical strength, and the obtained parameters ranged from about 7 to over 10 MPa. Differential scanning calorimetry (DSC) analysis determined that the gelatin melting point ranged from over 57 to about 67 °C, depending on the hydrocolloid concentration. The modulated differential scanning calorimetry (MDSC) analysis results exhibited remarkably low glass transition temperature (Tg) values, ranging from -34.6 to -46.5 °C. These materials are not in a glassy state at room temperature (~25 °C). It was shown that the character of the pure components affected the phenomenon of water diffusion in the tested films, depending on the humidity of the surrounding environment. Gelatin-based films were more sensitive to water vapor than pectin ones, resulting in higher water uptake over time. The nature of the changes in water content as a function of its activity indicates that composite gelatin films, with the addition of pumpkin purée, are characterized by a greater ability to adsorb moisture from the surrounding environment compared to pectin films. In addition, it was observed that the nature of the changes in water vapor adsorption in the case of protein films is different in the first hours of adsorption than in the case of pectin films, and changes significantly after 10 h of the film staying in an environment with relative humidity RH = 75.3%. The obtained results showed that pumpkin purée is a valuable plant material, which can form continuous films with the addition of gelling agents; however, practical application as edible sheets or wraps for food products needs to be preceded with additional research on its stability and interactions between films and food ingredients.


Asunto(s)
Cucurbita , Verduras , Animales , Gelatina , Vapor , Almidón/química , Pectinas/química , Permeabilidad , Embalaje de Alimentos/métodos
4.
Gels ; 10(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786257

RESUMEN

Edible hydrogel coatings or films in comparison to conventional food packaging materials are characterized as thin layers obtained from biopolymers that can be applied or enveloped onto the surface of food products. The use of lipid-containing hydrogel packaging materials, primarily as edible protective coatings for food applications, is recognized for their excellent barrier capacity against water vapor during storage. With the high brittleness of waxes and the oxidation of different fats or oils, highly stable agents are desirable. Jojoba oil obtained from the jojoba shrub is an ester of long-chain fatty acids and monovalent, long-chain alcohols, which contains natural oxidants α, ß, and δ tocopherols; therefore, it is resistant to oxidation and shows high thermal stability. The production of hydrogel films and coatings involves solvent evaporation, which may occur in ambient or controlled drying conditions. The study aimed to determine the effect of drying conditions (temperature from 20 to 70 °C and relative humidity from 30 to 70%) and jojoba oil addition at the concentrations of 0, 0.5, 1.0, 1.5, and 2.0% on the selected physical properties of hydrogel edible films based on whey protein isolate. Homogenization resulted in stable, film-forming emulsions with bimodal lipid droplet distribution and a particle size close to 3 and 45 µm. When higher drying temperatures were used, the drying time was much shorter (minimum 2 h for temperature of 70 °C and relative humidity of 30%) and a more compact structure, lower water content (12.00-13.68%), and better mechanical resistance (3.48-3.93 MPa) of hydrogel whey protein films were observed. The optimal conditions for drying hydrogel whey protein films are a temperature of 50 °C and an air humidity of 30% over 3 h. Increasing the content of jojoba oil caused noticeable color changes (total color difference increased from 2.00 to 2.43 at 20 °C and from 2.58 to 3.04 at 70 °C), improved mechanical elasticity (the highest at 60 °C from 48.4 to 101.1%), and reduced water vapor permeability (the highest at 70 °C from 9.00·10-10 to 6.35·10-10 g/m·s·Pa) of the analyzed films. The observations of scanning electron micrographs showed the heterogeneity of the film surface and irregular distribution of lipid droplets in the film matrix.

5.
Polymers (Basel) ; 16(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38611267

RESUMEN

The aim of this work was to develop edible films derived from gelatin and beef broth and to analyze the physical properties of the output products. The presented research is important from the point of view of searching for food packaging solutions that may replace traditionally used plastic packaging. This study's conceptual framework is in line with the trend of sustainable development and zero waste. This study was conducted to develop a recipe for edible films derived from beef gelatin with gelatin concentrations at 4%, 8%, and 12% enriched with additions of beef broth in amounts of 25, 50, 75, and 100%. Selected physical properties of the output edible films were examined in terms of thickness, swelling in water, opacity, water content, water solubility, structure, and mechanical properties. The conducted research made it plausible to conclude that the addition of broth has a positive effect on the extensibility of the edible films and the other physical properties under consideration, especially on decreasing the film thickness, which was found to vary between 50.2 and 191.6 µm. When gelatin and broth were added at low concentrations, the tensile strength of the films increased, and subsequently decreased; however, an opposite effect was observed for elongation at break. The increased broth concentration caused the film opacity to increase from 0.39 to 4.54 A/mm and from 0.18 to 1.04 A/mm with gelatin concentrations of 4% and 12%, respectively. The water solubility of the gelatin films decreased as a result of the broth addition. However, it was noticed that increasing the content of broth caused the water solubility to increase in the tested films. The mere presence of broth in the gelatin films changed the microstructure of the films and also made them thinner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA