Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(2): 88, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206460

RESUMEN

The initial part of the review provides an extensive overview about MXenes as novel and exciting 2D nanomaterials describing their basic physico-chemical features, methods of their synthesis, and possible interfacial modifications and techniques, which could be applied to the characterization of MXenes. Unique physico-chemical parameters of MXenes make them attractive for many practical applications, which are shortly discussed. Use of MXenes for healthcare applications is a hot scientific discipline which is discussed in detail. The article focuses on determination of low molecular weight analytes (metabolites), high molecular weight analytes (DNA/RNA and proteins), or even cells, exosomes, and viruses detected using electrochemical sensors and biosensors. Separate chapters are provided to show the potential of MXene-based devices for determination of cancer biomarkers and as wearable sensors and biosensors for monitoring of a wide range of human activities.


Asunto(s)
Exosomas , Nanoestructuras , Nitritos , Elementos de Transición , Humanos , Biomarcadores de Tumor , Peso Molecular
2.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38400284

RESUMEN

Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e., benign (control) cell line RWPE1 and carcinoma cell line 22Rv1. Exosomes produced by both cell lines are characterised by various methods including nanoparticle-tracking analysis, dynamic light scattering, scanning electron microscopy and atomic force microscopy. In addition, surface plasmon resonance (SPR) is used to study three different receptors on the exosomal surface (CD63, CD81 and prostate-specific membrane antigen-PMSA), implementing monoclonal antibodies and identifying the type of glycans present on the surface of exosomes using lectins (glycan-recognising proteins). Electrochemical analysis is used to understand the interfacial properties of exosomes. The results indicate that cancerous exosomes are smaller, are produced at higher concentrations, and exhibit more nega tive zeta potential than the control exosomes. The SPR experiments confirm that negatively charged α-2,3- and α-2,6-sialic acid-containing glycans are found in greater abundance on carcinoma exosomes, whereas bisecting and branched glycans are more abundant in the control exosomes. The SPR results also show that a sandwich antibody/exosomes/lectins configuration could be constructed for effective glycoprofiling of exosomes as a novel liquid biopsy marker.


Asunto(s)
Carcinoma , Exosomas , Masculino , Humanos , Exosomas/química , Biopsia Líquida , Carcinoma/metabolismo , Carcinoma/patología , Lectinas/análisis , Lectinas/metabolismo , Polisacáridos/análisis , Polisacáridos/metabolismo
3.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298163

RESUMEN

Manganese oxides are considered an essential component of natural geochemical barriers due to their redox and sorptive reactivity towards essential and potentially toxic trace elements. Despite the perception that they are in a relatively stable phase, microorganisms can actively alter the prevailing conditions in their microenvironment and initiate the dissolution of minerals, a process that is governed by various direct (enzymatic) or indirect mechanisms. Microorganisms are also capable of precipitating the bioavailable manganese ions via redox transformations into biogenic minerals, including manganese oxides (e.g., low-crystalline birnessite) or oxalates. Microbially mediated transformation influences the (bio)geochemistry of manganese and also the environmental chemistry of elements intimately associated with its oxides. Therefore, the biodeterioration of manganese-bearing phases and the subsequent biologically induced precipitation of new biogenic minerals may inevitably and severely impact the environment. This review highlights and discusses the role of microbially induced or catalyzed processes that affect the transformation of manganese oxides in the environment as relevant to the function of geochemical barriers.


Asunto(s)
Manganeso , Óxidos , Manganeso/química , Óxidos/química , Minerales/química , Compuestos de Manganeso/química , Oxidación-Reducción , Ambiente
4.
Small ; 18(34): e2202522, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896869

RESUMEN

Regulating the catalytic pathways of single-atom sites in single atom catalysts (SACs) is an exciting debate at the moment, which has redirected the research towards understanding and modifying the single-atom catalytic sites through various strategies including altering the coordination environment of single atom for desirable outcomes as well as increasing their number. One useful aspect concerning the tunability of the catalytic pathways of SACs, which has been overlooked, is the oxidation state dynamics of the single atoms. In this study, iron single-atoms (FeSA) with variable oxidation states, dependent on the precursors, are harnessed inside a nitrogen-rich functionalized carbon quantum dots (CQDs) matrix via a facile one-step and low-temperature synthesis process. Dynamic electronic properties are imparted to the FeSAs by the simpler carbon dots matrix of CQDs in order to achieve the desired catalytic pathways of reactive oxygen species (ROS) generation in different environments, which are explored experimentally and theoretically for an in-depth understanding of the redox chemistry that drives the alternative catalytic pathways in FeSA@CQDs. These alternative and oxidation state-dependent catalytic pathways are employed for specific as well as cascade-like activities simulating natural enzymes as well as biomarkers for the detection of cancerous cells.


Asunto(s)
Carbono , Puntos Cuánticos , Carbono/química , Catálisis , Nitrógeno/química , Oxidación-Reducción , Puntos Cuánticos/química
5.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36232767

RESUMEN

The quantification of gold nanoparticles (AuNP) in environmental samples at ultratrace concentrations can be accurately performed by sophisticated and pricey analytical methods. This paper aims to challenge the analytical potential and advantages of cheaper and equally reliable alternatives that couple the well-established extraction procedures with common spectrometric methods. We discuss several combinations of techniques that are suitable for separation/preconcentration and quantification of AuNP in complex and challenging aqueous matrices, such as tap, river, lake, brook, mineral, and sea waters, as well as wastewaters. Cloud point extraction (CPE) has been successfully combined with electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma mass spectrometry (ICP-MS), chemiluminescence (CL), and total reflection X-ray fluorescence spectrometry (TXRF). The major advantage of this approach is the ability to quantify AuNP of different sizes and coatings in a sample with a volume in the order of milliliters. Small volumes of sample (5 mL), dispersive solvent (50 µL), and extraction agent (70 µL) were reported also for surfactant-assisted dispersive liquid-liquid microextraction (SA-DLLME) coupled with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The limits of detection (LOD) achieved using different combinations of methods as well as enrichment factors (EF) varied greatly, being 0.004-200 ng L-1 and 8-250, respectively.


Asunto(s)
Oro , Nanopartículas del Metal , Solventes , Tensoactivos , Aguas Residuales
6.
Int J Mol Sci ; 23(15)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35955674

RESUMEN

The conducting polymer poly(2-(1H-pyrrole-1-yl)ethyl methacrylate (PPEMA) was synthesized by conventional atom transfer radical polymerization for the first time from free as well as surface-bonded alkyl bromide initiator. When grafted from the surface of carbonyl iron (CI) a substantial conducting shell on the magnetic core was obtained. Synthesis of the monomer as well as its polymer was confirmed using proton spectrum nuclear magnetic resonance (1H NMR). Polymers with various molar masses and low dispersity showed the variability of this approach, providing a system with a tailorable structure and brush-like morphology. Successful grafting from the CI surface was elucidate by transmission electron microscopy and Fourier-transform infrared spectroscopy. Very importantly, thanks to the targeted nanometer-scale shell thickness of the PPEMA coating, the magnetization properties of the particles were negligibly affected, as confirmed using vibration sample magnetometry. Smart elastomers (SE) consisting of bare CI or CI grafted with PPEMA chains (CI-PPEMA) and silicone elastomer were prepared and dynamic mechanical properties as well as interference shielding ones were investigated. It was found that short polymer chains grafted to the CI particles exhibited the plasticizing effect, which might be interesting from the magnetorheological point of view, and more interestingly, in comparison to the neat CI-based sample, it provided enhanced electromagnetic shielding of nearly 30 dB in thickness of 500 µm. Thus, SE containing the newly synthesized CI-PPEMA hybrid particles also exhibited considerably enhanced damping factor and proper mechanical performance, which make the material highly promising from various practical application points of view.


Asunto(s)
Metacrilatos , Pirroles , Fenómenos Electromagnéticos , Hierro , Metacrilatos/química , Polimerizacion , Polímeros/química , Propiedades de Superficie
7.
Molecules ; 27(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35744975

RESUMEN

Adsorption of carbon dioxide (CO2), as well as many other kinds of small molecules, is of importance for industrial and sensing applications. Metal-organic framework (MOF)-based adsorbents are spotlighted for such applications. An essential for MOF adsorbent application is a simple and easy fabrication process, preferably from a cheap, sustainable, and environmentally friendly ligand. Herein, we fabricated a novel structural, thermally stable MOF with fluorescence properties, namely Zn [5-oxo-2,3-dihydro-5H-[1,3]-thiazolo [3,2-a]pyridine-3,7-dicarboxylic acid (TPDCA)] • dimethylformamide (DMF) •0.25 H2O (coded as QUF-001 MOF), in solvothermal conditions by using zinc nitrate as a source of metal ion and TPDCA as a ligand easy accessible from citric acid and cysteine. Single crystal X-ray diffraction analysis and microscopic examination revealed the two-dimensional character of the formed MOF. Upon treatment of QUF-001 with organic solvents (such as methanol, isopropanol, chloroform, dimethylformamide, tetrahydrofuran, hexane), interactions were observed and changes in fluorescence maxima as well as in the powder diffraction patterns were noticed, indicating the inclusion and intercalation of the solvents into the interlamellar space of the crystal structure of QUF-001. Furthermore, CO2 and CH4 molecule sorption properties for QUF-001 reached up to 1.6 mmol/g and 8.1 mmol/g, respectively, at 298 K and a pressure of 50 bars.

8.
Expert Rev Proteomics ; 18(10): 881-910, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34711108

RESUMEN

INTRODUCTION: Breast cancer (BCa) is the most common cancer type diagnosed in women and 5th most common cause of deaths among all cancer deaths despite the fact that screening program is at place. This is why novel diagnostics approaches are needed in order to decrease number of BCa cases and disease mortality. AREAS COVERED: In this review paper, we aim to cover some basic aspects regarding cellular metabolism and signalling in BCa behind altered glycosylation. We also discuss novel exciting discoveries regarding glycan-based analysis, which can provide useful information for better understanding of the disease. The final part deals with clinical usefulness of glycan-based biomarkers and the clinical performance of such biomarkers is compared to already approved BCa biomarkers and diagnostic tools based on imaging. EXPERT OPINION: Recent discoveries suggest that glycan-based biomarkers offer high accuracy for possible BCa diagnostics in blood, but also for better monitoring and management of BCa patients. The review article was written using Web of Science search engine to include articles published between 2019 and 2021.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Biomarcadores , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico , Femenino , Glicómica , Glicosilación , Humanos , Polisacáridos
9.
Glycoconj J ; 37(6): 703-711, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33119808

RESUMEN

This is the first work focused on glycoprofiling of whole N- and O- glycome using lectins in an array format applied for analysis of serum samples from healthy individuals, benign prostate hyperplasia (BPH) patients, and prostate cancer (PCa) patients. Lectin microarray was prepared using traditional lectins with the incorporation of 2 recombinant bacterial lectins and 3 human lectins (17 lectins in total). Clinical validation of glycans as biomarkers was done in two studies: discrimination of healthy individuals with BPH patients vs. PCa patients (C vs. PCa) and discrimination of healthy individuals vs. BPH and PCa patients (H vs. PCond). Single lectins (17 lectins) and a combination of two lectins (136 binary lectin combinations) were applied in the clinical validation of glycan biomarkers providing 153 AUC values from ROC curves for both studies (C vs. PCa and H vs. PCond). Potential N- and O-glycans as biomarkers were identified and possible carriers of these glycans are shortly discussed.


Asunto(s)
Biomarcadores de Tumor/sangre , Glicoproteínas/sangre , Lectinas/sangre , Neoplasias de la Próstata/sangre , Glicoproteínas/genética , Glicosilación , Humanos , Lectinas/genética , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Polisacáridos/sangre , Polisacáridos/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
10.
Sensors (Basel) ; 20(14)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698389

RESUMEN

This comprehensive review paper describes recent advances made in the field of electrochemical nanobiosensors for the detection of breast cancer (BC) biomarkers such as specific genes, microRNA, proteins, circulating tumor cells, BC cell lines, and exosomes or exosome-derived biomarkers. Besides the description of key functional characteristics of electrochemical nanobiosensors, the reader can find basic statistic information about BC incidence and mortality, breast pathology, and current clinically used BC biomarkers. The final part of the review is focused on challenges that need to be addressed in order to apply electrochemical nanobiosensors in a clinical practice.


Asunto(s)
Biomarcadores de Tumor/análisis , Técnicas Biosensibles/instrumentación , Neoplasias de la Mama , Técnicas Electroquímicas/instrumentación , Neoplasias de la Mama/diagnóstico , Exosomas , Humanos , MicroARNs
11.
Expert Rev Proteomics ; 16(1): 65-76, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30451032

RESUMEN

Introduction: Prostate cancer (PCa) is a life-threatening disease affecting millions of men. The current best PCa biomarker (level of prostate-specific antigen in serum) lacks specificity for PCa diagnostics and this is why novel PCa biomarkers in addition to the conventional ones based on biomolecules such as DNA, RNA and proteins need to be identified. Areas covered: This review details the potential of glycans-based biomarkers to become diagnostic, prognostic, predictive and therapeutic PCa biomarkers with a brief description of the innovative approaches applied to glycan analysis to date. Finally, the review covers the possibility to use exosomes as a rich source of glycans for future innovative and advanced diagnostics of PCa. The review covers updates in the field since 2016. Expert commentary: The summary provided in this review paper suggests that glycan-based biomarkers can offer high-assay accuracy not only for diagnostic purposes but also for monitoring/surveillance of the PCa disease.


Asunto(s)
Glicómica/métodos , Neoplasias de la Próstata/metabolismo , Biomarcadores de Tumor/metabolismo , Exosomas/metabolismo , Humanos , Lectinas/metabolismo , Masculino , Polisacáridos/metabolismo
12.
Langmuir ; 35(5): 1391-1403, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30134095

RESUMEN

A procedure for the preparation of copolymers bearing sulfobetaine and carboxybetaine methacrylic-based monomers by free-radical polymerization is described and discussed. A combination of monomers affects the upper critical solution temperature (UCST) in water and in the presence of a simple NaCl electrolyte while retaining the zwitterionic character. In addition, hydrogel samples were prepared and showed tunable water structure and mechanical properties. The total nonfreezable water content decreases with the amount of carboxybetaine segment in the hydrogel feed and the compression moduli were in a range of 0.7-1.6 MPa. Responses to external conditions such as temperature and ion strength were investigated and a potential application such as modulated thermal detection is proposed. The presence of the carboxylate group in the carboxybetaine segment enables a small fluorescence probe and peptide bearing RDG motif to be attached to polymer and hydrogel samples, respectively. The hydrogel samples functionalized with the RGD motif exhibit controlled cell adhesion. Such synthetic strategy based on combination of different zwitterionic segments offers a simple pathway for the development of zwitterionic materials with programmable properties.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Ácidos Polimetacrílicos/farmacología , Agua/química , Células 3T3 , Animales , Betaína/análogos & derivados , Betaína/química , Hidrogeles/síntesis química , Hidrogeles/química , Hidrogeles/farmacología , Concentración de Iones de Hidrógeno , Ratones , Concentración Osmolar , Polimerizacion , Ácidos Polimetacrílicos/síntesis química , Ácidos Polimetacrílicos/química , Temperatura de Transición , Sustancias Viscoelásticas/síntesis química , Sustancias Viscoelásticas/química , Sustancias Viscoelásticas/farmacología
13.
Environ Sci Technol ; 53(15): 9260-9268, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31240919

RESUMEN

In this paper, we propose and investigate an original approach to energy conversion based on polyzwitterionic hydrogels, which exhibit an antipolyelectrolyte effect that enables them to swell in salt water and shrink in water of a different (i.e., desalinated water) salinity. The swelling and shrinking processes run cyclically and can move a piston up or down reversibly, thus transforming the antipolyelectrolyte effect into a mechanical force based on the salinity gradient. This phenomenon makes polyzwitterionic hydrogels suitable for use in a smart, polymeric engine. We apply this approach to investigate energy recovery from a polysulfobetaine-based hydrogel. The cross-linking density, external load, particle size, and repeatability of energy recoverability of hydrogels are examined. The maximum energy recovery from 0.4 g of hydrogel in feed (calculated based on dry form) of 102 mJ/kg was obtained by a hydrogel with a 3% cross-linking density, a 200-300 µm particle size, and 100 g external load. Excellent reproducibility of engine cycles was achieved over 10 cycles. This concept is complementary to the osmotic engine concept based on a polyelectrolyte hydrogel. In addition, polyzwitterionic materials have become a benchmark material for preventing biofouling, and the swelling properties of such materials can be further modulated and tuned.


Asunto(s)
Hidrogeles , Salinidad , Polímeros , Reproducibilidad de los Resultados , Agua
14.
Mikrochim Acta ; 187(1): 52, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848717

RESUMEN

An electrochemical study was performed on the behavior of Ti3C2Tx MXenes prepared by using either HF (MXene1) or LiF/HCl as etchants (MXene2). The use of two redox probes indicates the presence of a higher negative charge density on MXene2 in comparison to MXene1. The characterization of two nanomaterials shows that titanium and fluoride are present higher by one order of magnitude at the interface of MXene2, compared to MXene1. The high Ti and F content is accompanied by a 82-fold larger (249 µA·cm-2 vs. 5.64 µA·cm-2) anodic peak at the peak potential near 0.4 V (vs. Ag/AgCl). Similarly, the peak current on MXene2 is 317-fold higher for the oxygen reduction at pH 7.0 (at a voltage of -0.84 V) and 215-fold higher for the reduction of H2O2 at -0.89 V, when compared to MXene1. Graphical abstractDifference in electrochemical behavior of MXene prepared by HF (MXene1) and LiF/HCl (MXene2) as etchants.

15.
Sensors (Basel) ; 19(24)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31818011

RESUMEN

The study describes development of a glycan biosensor for detection of a tumor-associated antibody. The glycan biosensor is built on an electrochemically activated/oxidized graphene screen-printed electrode (GSPE). Oxygen functionalities were subsequently applied for covalent immobilization of human serum albumin (HSA) as a natural nanoscaffold for covalent immobilization of Thomsen-nouvelle (Tn) antigen (GalNAc-O-Ser/Thr) to be fully available for affinity interaction with its analyte-a tumor-associated antibody. The step by step building process of glycan biosensor development was comprehensively characterized using a battery of techniques (scanning electron microscopy, atomic force microscopy, contact angle measurements, secondary ion mass spectrometry, surface plasmon resonance, Raman and energy-dispersive X-ray spectroscopy). Results suggest that electrochemical oxidation of graphene SPE preferentially oxidizes only the surface of graphene flakes within the graphene SPE. Optimization studies revealed the following optimal parameters: activation potential of +1.5 V vs. Ag/AgCl/3 M KCl, activation time of 60 s and concentration of HSA of 0.1 g L-1. Finally, the glycan biosensor was built up able to selectively and sensitively detect its analyte down to low aM concentration. The binding preference of the glycan biosensor was in an agreement with independent surface plasmon resonance analysis.


Asunto(s)
Anticuerpos Antineoplásicos/sangre , Antígenos de Carbohidratos Asociados a Tumores/química , Técnicas Biosensibles/métodos , Grafito/química , Anticuerpos Antineoplásicos/inmunología , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Técnicas Electroquímicas , Electrodos , Humanos , Límite de Detección , Albúmina Sérica/química
16.
Med Res Rev ; 37(3): 514-626, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27859448

RESUMEN

This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.


Asunto(s)
Diagnóstico por Imagen/métodos , Glicómica/métodos , Nanomedicina/métodos , Nanotecnología/métodos , Animales , Técnicas Biosensibles , Sistemas de Liberación de Medicamentos , Humanos
17.
Langmuir ; 33(27): 6657-6666, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28628328

RESUMEN

We describe a self-assembled monolayer (SAM) on a gold surface with a carboxybetaine ester functionality to control the interaction between DNA and gold nanoparticles via pH. The negatively charged phosphate backbone of DNA interacts with and adsorbs to the positively charged carboxybetaine esters on the SAM. DNA release can be achieved by the hydrolysis of carboxybetaine ester (CBE) to a zwitterionic carboxybetaine state. Furthermore, the adsorption of negatively charged citrate-capped gold nanoparticles to a SAM-modified plain gold surface can be controlled by the pH. The SAM based on carboxybetaine ester allows for the homogeneous adsorption of particles, whereas the SAM after hydrolysis at high pH repels AuNP adsorption. The antifouling surface properties of the surface modified with carboxybetaine were investigated with protein samples.


Asunto(s)
Nanopartículas del Metal , Adsorción , ADN , Oro , Concentración de Iones de Hidrógeno , Propiedades de Superficie
18.
Electrochim Acta ; 235: 471-479, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29109588

RESUMEN

An extensive characterization of pristine and oxidized Ti3C2Tx (T: =O, -OH, -F) MXene showed that exposure of MXene to an anodic potential in the aqueous solution oxidizes the nanomaterial forming TiO2 layer or TiO2 domains with subsequent TiO2 dissolution by F- ions, making the resulting nanomaterial less electrochemically active compared to the pristine Ti3C2Tx. The Ti3C2Tx could be thus applied for electrochemical reactions in a cathodic potential window i.e. for ultrasensitive detection of H2O2 down to nM level with a response time of approx. 10 s. The manuscript also shows electrochemical behavior of Ti3C2Tx modified electrode towards oxidation of NADH and towards oxygen reduction reactions.

19.
Proteomics ; 16(24): 3085-3095, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26920336

RESUMEN

The construction of a sensitive electrochemical lectin-based immunosensor for detection of a prostate specific antigen (PSA) is shown here. Three lectins with different carbohydrate specificities were used in this study to glycoprofile PSA, which is the most common biomarker for prostate cancer (PCa) diagnosis. The biosensor showed presence of α-L-fucose and α-(2,6)-linked terminal sialic acid within PSA´s glycan with high abundance, while only traces of α-(2,3)-linked terminal sialic acid were found. MALDI TOF/TOF mass spectrometry was applied to validate results obtained by the biosensor with a focus on determination of a type of sialic acid linkage by two methods. The first direct comparison of electrochemical immunosensor assay employing lectins for PSA glycoprofiling with mass spectrometric techniques is provided here and both methods show significant agreement. Thus, electrochemical lectin-based immunosensor has potential to be applied for prostate cancer diagnosis.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Inmunoensayo/métodos , Ácido N-Acetilneuramínico/análisis , Antígeno Prostático Específico/análisis , Anticuerpos Inmovilizados/química , Impedancia Eléctrica , Humanos , Lectinas/química , Límite de Detección , Masculino , Neoplasias de la Próstata/diagnóstico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
20.
Langmuir ; 32(22): 5491-9, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27181793

RESUMEN

A simple fabrication method for preparation of surfaces able to switch from superhydrophobic to superhydrophilic state in a reversible and fast way is described. A self-assembled monolayer (SAM) consisting of quaternary ammonium group with aliphatic tail bearing terminal thiol functionality was created on gold nano/microstructured and gold planar surfaces, respectively. A rough nano/microstructured surface was prepared by galvanic reaction on a silicon wafer. The reversible counterion exchange on the rough surface resulted in a switchable contact angle between <5° and 151°. The prewetted rough surface with Cl(-) as a counterion possesses a superoleophobic underwater character. The kinetics of counterion exchanges suggests a long hydration process and strong electron ion pairing between quaternary ammonium group and perfluorooctanoate counterion. Moreover, a wettability gradient from superhydrophobic to superhydrophilic can be formed on the modified rough gold surface in a robust and simple way by passive incubation of the substrate in a counterion solution and controlled by ionic strength. Furthermore, adsorption of gold nanoparticles to modified plain gold surface can be controlled to a high extent by counterions present on the SAM layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA