Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 32(2): 384-394, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38087779

RESUMEN

Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi). We developed a lentiviral vector capable of co-expressing short hairpin RNA (shRNA) against HPRT alongside two anti-HIV-1 genes: shRNA targeting HIV-1 co-receptor CCR5 and a membrane-anchored HIV-1 fusion inhibitor, C46, for efficient in vivo selection of anti-HIV-1 gene-modified human HSPC. 6TG-mediated preconditioning and in vivo selection significantly enhanced engraftment of HPRT-knockdown anti-HIV-1 gene-modified cells (>2-fold, p < 0.0001) in humanized bone marrow/liver/thymus (huBLT) mice. Viral load was significantly reduced (>1 log fold, p < 0.001) in 6TG-treated HIV-1-infected huBLT mice compared to 6TG-untreated mice. We demonstrated that 6TG-mediated preconditioning and in vivo selection considerably improved engraftment of HPRT-knockdown anti-HIV-1 gene-modified HSPC and repopulation of anti-HIV-1 gene-modified hematopoietic cells in huBLT mice, allowing for efficient HIV-1 inhibition.


Asunto(s)
VIH-1 , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Animales , VIH-1/fisiología , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Tioguanina/metabolismo , Tioguanina/farmacología , ARN Interferente Pequeño/genética
2.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473904

RESUMEN

Cancer in dogs has increased in recent years and is a leading cause of death. We have developed a retroviral replicating vector (RRV) that specifically targets cancer cells for infection and replication. RRV carrying a suicide gene induced synchronized killing of cancer cells when administered with a prodrug after infection. In this study, we evaluated two distinct RRVs derived from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV) in canine tumor models both in vitro and in vivo. Despite low infection rates in normal canine cells, both RRVs efficiently infected and replicated within all the canine tumor cells tested. The efficient intratumoral spread of the RRVs after their intratumoral injection was also demonstrated in nude mouse models of subcutaneous canine tumor xenografts. When both RRVs encoded a yeast cytosine deaminase suicide gene, which converts the prodrug 5-fluorocytosine (5-FC) to the active drug 5-fluorouracil, they caused tumor-cell-specific 5-FC-induced killing of the canine tumor cells in vitro. Furthermore, in the AZACF- and AZACH-cell subcutaneous tumor xenograft models, both RRVs exerted significant antitumor effects. These results suggest that RRV-mediated suicide gene therapy is a novel therapeutic approach to canine cancers.


Asunto(s)
Neoplasias , Profármacos , Ratones , Humanos , Perros , Animales , Terapia Genética/métodos , Línea Celular Tumoral , Virus de la Leucemia del Gibón/genética , Fluorouracilo/farmacología , Flucitosina/farmacología , Profármacos/farmacología , Vectores Genéticos , Citosina Desaminasa/genética , Neoplasias/tratamiento farmacológico
3.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834271

RESUMEN

Retroviral replicating vectors (RRVs) selectively replicate and can specifically introduce prodrug-activating genes into tumor cells, whereby subsequent prodrug administration induces the death of the infected tumor cells. We assessed the ability of two distinct RRVs generated from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV), which infect cells via type-III sodium-dependent phosphate transporters, PiT-2 and PiT-1, respectively, to infect human gastric cancer (GC) cells. A quantitative RT-PCR showed that all tested GC cell lines had higher expression levels of PiT-2 than PiT-1. Accordingly, AMLV, encoding a green fluorescent protein gene, infected and replicated more efficiently than GALV in most GC cell lines, whereas both RRVs had a low infection rate in human fibroblasts. RRV encoding a cytosine deaminase prodrug activator gene, which converts the prodrug 5-flucytosine (5-FC) to the active drug 5-fluorouracil, showed that AMLV promoted superior 5-FC-induced cytotoxicity compared with GALV, which correlated with the viral receptor expression level and viral spread. In MKN-74 subcutaneous xenograft models, AMLV had significant antitumor effects compared with GALV. Furthermore, in the MKN-74 recurrent tumor model in which 5-FC was discontinued, the resumption of 5-FC administration reduced the tumor volume. Thus, RRV-mediated prodrug activator gene therapy might be beneficial for treating human GC.


Asunto(s)
Profármacos , Neoplasias Gástricas , Ratones , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Profármacos/farmacología , Profármacos/uso terapéutico , Profármacos/metabolismo , Línea Celular Tumoral , Terapia Genética , Virus de la Leucemia del Gibón/genética , Virus de la Leucemia del Gibón/metabolismo , Vectores Genéticos/genética , Animales
4.
J Neurooncol ; 152(1): 1-13, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33389564

RESUMEN

INTRODUCTION: The treatment for glioblastoma (GBM) has remained unchanged for the past decade, with only minimal improvements in patient survival. As a result, novel treatments are needed to combat this devastating disease. Immunotherapies are treatments that stimulate the immune system to attack tumor cells and can be either local or systemically delivered. Viral treatments can lead to direct tumor cell death through their natural lifecycle or through the delivery of a suicide gene, with the potential to generate an anti-tumor immune response, making them interesting candidates for combinatorial treatment with immunotherapy. METHODS: We review the current literature surrounding the interactions between oncolytic viruses and the immune system as well as the use of oncolytic viruses combined with immunotherapies for the treatment of GBM. RESULTS: Viral therapies have exhibited preclinical efficacy as single-agents and are being investigated in that manner in clinical trials. Oncolytic viruses have significant interactions with the immune system, although this can also vary depending on the strain of virus. Combinatorial treatments using both oncolytic viruses and immunotherapies have demonstrated promising preclinical findings. CONCLUSIONS: Studies combining viral and immunotherapeutic treatment modalities have provided exciting results thus far and hold great promise for patients with GBM. Additional studies assessing the clinical efficacy of these treatments as well as improved preclinical modeling systems, safety mechanisms, and the balance between treatment efficacy and immune-mediated viral clearance should be considered.


Asunto(s)
Neoplasias Encefálicas/terapia , Terapia Combinada/métodos , Glioblastoma/terapia , Inmunoterapia/métodos , Viroterapia Oncolítica/métodos , Animales , Humanos
5.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093290

RESUMEN

Prodrug activator gene therapy mediated by murine leukemia virus (MLV)-based retroviral replicating vectors (RRV) was previously shown to be highly effective in killing glioma cells both in culture and in vivo. To avoid receptor interference and enable dual vector co-infection with MLV-RRV, we have developed another RRV based on gibbon ape leukemia virus (GALV) that also shows robust replicative spread in a wide variety of tumor cells. We evaluated the potential of GALV-based RRV as a cancer therapeutic agent by incorporating yeast cytosine deaminase (CD) and E. coli nitroreductase (NTR) prodrug activator genes into the vector. The expression of CD and NTR genes from GALV-RRV achieved highly efficient delivery of these prodrug activator genes to RG-2 glioma cells, resulting in enhanced cytotoxicity after administering their respective prodrugs 5-fluorocytosine and CB1954 in vitro. In an immune-competent intracerebral RG-2 glioma model, GALV-mediated CD and NTR gene therapy both significantly suppressed tumor growth with CB1954 administration after a single injection of vector supernatant. However, NTR showed greater potency than CD, with control animals receiving GALV-NTR vector alone (i.e., without CB1954 prodrug) showing extensive tumor growth with a median survival time of 17.5 days, while animals receiving GALV-NTR and CB1954 showed significantly prolonged survival with a median survival time of 30 days. In conclusion, GALV-RRV enabled high-efficiency gene transfer and persistent expression of NTR, resulting in efficient cell killing, suppression of tumor growth, and prolonged survival upon CB1954 administration. This validates the use of therapeutic strategies employing this prodrug activator gene to arm GALV-RRV, and opens the door to the possibility of future combination gene therapy with CD-armed MLV-RRV, as the latter vector is currently being evaluated in clinical trials.


Asunto(s)
Aziridinas/farmacología , Neoplasias Encefálicas/terapia , Flucitosina/farmacología , Terapia Genética , Vectores Genéticos , Glioma/terapia , Neoplasias Experimentales/terapia , Profármacos/farmacología , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Citosina Desaminasa/biosíntesis , Citosina Desaminasa/genética , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Glioma/genética , Glioma/metabolismo , Glioma/patología , Virus de la Leucemia del Gibón , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Nitrorreductasas/biosíntesis , Nitrorreductasas/genética , Ratas Endogámicas F344 , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética
6.
J Neurooncol ; 134(1): 29-40, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28597184

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor and is associated with an extremely poor clinical prognosis. One pathologic hallmark of GBM is excessive vascularization with abnormal blood vessels. Extensive investigation of anti-angiogenic therapy as a treatment for recurrent GBM has been performed. Bevacizumab, a monoclonal anti-vascular endothelial growth factor A (VEGF-A), suggests a progression-free survival benefit but no overall survival benefit. Developing novel anti-angiogenic therapies are urgently needed in controlling GBM growth. In this study, we demonstrate tumor expression of epithelial membrane protein-2 (EMP2) promotes angiogenesis both in vitro and in vivo using cell lines from human GBM. Mechanistically, this pro-angiogenic effect of EMP2 was partially through upregulating tumor VEGF-A levels. A potential therapeutic effect of a systemic administration of anti-EMP2 IgG1 on intracranial xenografts was observed resulting in both significant reduction of tumor load and decreased tumor vasculature. These results suggest the potential for anti-EMP2 IgG1 as a promising novel anti-angiogenic therapy for GBM. Further investigation is needed to fully understand the molecular mechanisms how EMP2 modulates GBM pathogenesis and progression and to further characterize anti-EMP2 therapy in GBM.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/patología , Glicoproteínas de Membrana/metabolismo , Neovascularización Patológica/etiología , Animales , Antígenos CD34/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Femenino , Glioblastoma/tratamiento farmacológico , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Inmunoglobulina G/uso terapéutico , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Desnudos , Análisis por Micromatrices , Neovascularización Patológica/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transfección , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cancer Immunol Immunother ; 65(9): 1085-97, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27439500

RESUMEN

Natural killer (NK) cells are functionally suppressed in the glioblastoma multiforme (GBM) tumor microenvironment. We have recently shown that survival and differentiation of cancer stem-like cells (CSCs)/poorly differentiated tumors are controlled through two distinct phenotypes of cytotoxic and non-cytotoxic/split anergized NK cells, respectively. In this paper, we studied the function of NK cells against brain CSCs/poorly differentiated GBM and their NK cell-differentiated counterparts. Brain CSCs/poorly differentiated GBM, differentiated by split anergized NK supernatants (supernatants from NK cells treated with IL-2 + anti-CD16mAb) expressed higher levels of CD54, B7H1 and MHC-I and were killed less by the NK cells, whereas their CSCs/poorly differentiated counterparts were highly susceptible to NK cell lysis. Resistance to NK cells and differentiation of brain CSCs/poorly differentiated GBM by split anergized NK cells were mediated by interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Brain CSCs/poorly differentiated GBM expressed low levels of TNFRs and IFN-γRs, and when differentiated and cultured with IL-2-treated NK cells, they induced increased secretion of pro-inflammatory cytokine interleukin (IL)-6 and chemokine IL-8 in the presence of decreased IFN-γ secretion. NK-induced differentiation of brain CSCs/poorly differentiated GBM cells was independent of the function of IL-6 and/or IL-8. The inability of NK cells to lyse GBM tumors and the presence of a sustained release of pro-inflammatory cytokines IL-6 and chemokine IL-8 in the presence of a decreased IFN-γ secretion may lead to the inadequacy of NK cells to differentiate GBM CSCs/poorly differentiated tumors, thus failing to control tumor growth.


Asunto(s)
Neoplasias Encefálicas/inmunología , Glioblastoma/inmunología , Interferón gamma/inmunología , Interleucina-6/inmunología , Interleucina-8/inmunología , Células Asesinas Naturales/inmunología , Células Madre Neoplásicas/inmunología , Neoplasias Encefálicas/patología , Comunicación Celular/inmunología , Diferenciación Celular/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica , Glioblastoma/patología , Humanos , Interferón gamma/deficiencia , Interleucina-2/farmacología , Células Madre Neoplásicas/patología
8.
J Virol ; 89(2): 1195-204, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25378501

RESUMEN

UNLABELLED: Cellular immunity is pivotal in HIV-1 pathogenesis but is hampered by viral sequence diversity. An approach to minimize this diversity is to focus immunity on conserved proteome sequences; therefore, we selected four relatively conserved regions (Gag amino acids 148 to 214 and 250 to 335, Env amino acids 521 to 606, and Nef amino acids 106 to 148), each created in three mosaics, to provide better coverage of M-group HIV-1 sequences. A conserved-region vaccine (CRV) delivering genes for these four regions as equal mixtures of three mosaics each (each region at a separate injection site) was compared to a whole-protein vaccine (WPV) delivering equimolar amounts of genes for whole Gag, Env, and Nef as clade B consensus sequences (separate injection sites). Three rhesus macaques were vaccinated via three DNA primes and a recombinant adenovirus type 5 boost (weeks 0, 4, 8, and 24, respectively). Although CRV inserts were about one-fifth that of WPV, the CRV generated comparable-magnitude blood CD4+ and CD8+ T lymphocyte responses against Gag, Env, and Nef. WPV responses preferentially targeted proteome areas outside the selected conserved regions in direct proportion to sequence lengths, indicating similar immunogenicities for the conserved regions and the outside regions. The CRV yielded a conserved-region targeting density that was approximately 5-fold higher than that of the WPV. A similar pattern was seen for bronchoalveolar lymphocytes, but with quadruple the magnitudes seen in blood. Overall, these findings demonstrate that the selected conserved regions are highly immunogenic and that anatomically isolated vaccinations with these regions focus immunodominance compared to the case for full-length protein vaccination. IMPORTANCE: HIV-1 sequence diversity is a major barrier limiting the capability of cellular immunity to contain infection and the ability of vaccines to match circulating viral sequences. To date, vaccines tested in humans have delivered whole proteins or genes for whole proteins, and it is unclear whether including only conserved sequences would yield sufficient cellular immunogenicity. We tested a vaccine delivering genes for four small conserved HIV-1 regions compared to a control vaccine with genes for whole Gag, Env, and Nef. Although the conserved regions ranged from 43 to 86 amino acids and comprised less than one-fifth of the whole Gag/Env/Nef sequence, the vaccines elicited equivalent total magnitudes of both CD4+ and CD8+ T lymphocyte responses. These data demonstrate the immunogenicity of these small conserved regions and the potential for a vaccine to steer immunodominance toward conserved epitopes.


Asunto(s)
Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/inmunología , Secuencia Conservada , VIH-1/inmunología , Epítopos Inmunodominantes , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Macaca mulatta , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/administración & dosificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/administración & dosificación , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/administración & dosificación , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/inmunología
9.
J Biol Chem ; 289(20): 13974-85, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24644285

RESUMEN

Despite recent advances in molecular classification, surgery, radiotherapy, and targeted therapies, the clinical outcome of patients with malignant brain tumors remains extremely poor. In this study, we have identified the tetraspan protein epithelial membrane protein-2 (EMP2) as a potential target for glioblastoma (GBM) killing. EMP2 had low or undetectable expression in normal brain but was highly expressed in GBM as 95% of patients showed some expression of the protein. In GBM cells, EMP2 enhanced tumor growth in vivo in part by up-regulating αvß3 integrin surface expression, activating focal adhesion kinase and Src kinases, and promoting cell migration and invasion. Consistent with these findings, EMP2 expression significantly correlated with activated Src kinase in patient samples and promoted tumor cell invasion using intracranial mouse models. As a proof of principle to determine whether EMP2 could serve as a target for therapy, cells were treated using specific anti-EMP2 antibody reagents. These reagents were effective in killing GBM cells in vitro and in reducing tumor load in subcutaneous mouse models. These results support the role of EMP2 in the pathogenesis of GBM and suggest that anti-EMP2 treatment may be a novel therapeutic treatment.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Glicoproteínas de Membrana/metabolismo , Terapia Molecular Dirigida , Familia-src Quinasas/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Activación Enzimática , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/enzimología , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Glicoproteínas de Membrana/inmunología , Ratones , Fenotipo
10.
J Biol Chem ; 289(50): 34921-37, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25331947

RESUMEN

The molecular mechanism of p16-mediated senescence in cisplatin-treated cancer cells is not fully understood. Here we show that cisplatin treatment of head and neck cancer cells results in nuclear transport of p16 leading to a molecular modification of NFκB. Chromatin immunoprecipitation assays show that this modification is associated with the inhibition of NFκB interacting with its DNA binding sequences, leading to decreased expression of NFκB-transcribed proteins. LCMS proteomic analysis of LAP-TAP-purified proteins from HeLa cells containing a tetracycline-inducible GFP-S peptide-NFκB expression system identified gigaxonin, an ubiquitin E3 ligase adaptor, as an NFκB-interacting protein. Immunoblotting and siRNA studies confirmed the NFκB-gigaxonin interaction and the dependence of this binding on p16-NFκB binding. Using gel shift assays, we have confirmed p16-NFκB and gigaxonin-NFκB interactions. Furthermore, we have observed increased NFκB ubiquitination with cisplatin treatment that is abolished in the absence of p16 and gigaxonin expression. Analysis of 103 primary tumors has shown that increased nuclear p16 expression correlates with enhanced survival of head and neck cancer patients (p < 0.0000542), indicating the importance of nuclear p16 expression in prognosis. Finally, p16 expression is associated with reduced cytokine expression and the presence of human papilloma virus in chemoradiation-sensitive basaloid tumors. However, the absence of p16 expression is associated with enhanced cytokine expression and the absence of human papilloma virus in aggressive tumors. These results clearly demonstrate that nuclear p16 and gigaxonin play an important role in chemosensitivity of head and neck cancers through ubiquitination of NFκB.


Asunto(s)
Antineoplásicos/farmacología , Senescencia Celular/efectos de los fármacos , Cisplatino/farmacología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas del Citoesqueleto/metabolismo , FN-kappa B/metabolismo , Ubiquitinación/efectos de los fármacos , Transporte Activo de Núcleo Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Ciclina D1/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/virología , Papillomavirus Humano 16/fisiología , Humanos , Pronóstico
11.
Hepatology ; 59(1): 216-27, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23929703

RESUMEN

UNLABELLED: Hepatocellular carcinoma (HCC) occurs predominantly in patients with liver cirrhosis. Here we show an innovative RNA-based targeted approach to enhance endogenous albumin production while reducing liver tumor burden. We designed short-activating RNAs (saRNA) to enhance expression of C/EBPα (CCAAT/enhancer-binding protein-α), a transcriptional regulator and activator of albumin gene expression. Increased levels of both C/EBPα and albumin mRNA in addition to a 3-fold increase in albumin secretion and 50% decrease in cell proliferation was observed in C/EBPα-saRNA transfected HepG2 cells. Intravenous injection of C/EBPα-saRNA in a cirrhotic rat model with multifocal liver tumors increased circulating serum albumin by over 30%, showing evidence of improved liver function. Tumor burden decreased by 80% (P = 0.003) with a 40% reduction in a marker of preneoplastic transformation. Since C/EBPα has known antiproliferative activities by way of retinoblastoma, p21, and cyclins, we used messenger RNA (mRNA) expression liver cancer-specific microarray in C/EBPα-saRNA-transfected HepG2 cells to confirm down-regulation of genes strongly enriched for negative regulation of apoptosis, angiogenesis, and metastasis. Up-regulated genes were enriched for tumor suppressors and positive regulators of cell differentiation. A quantitative polymerase chain reaction (PCR) and western blot analysis of C/EBPα-saRNA-transfected cells suggested that in addition to the known antiproliferative targets of C/EBPα, we also observed suppression of interleukin (IL)6R, c-Myc, and reduced STAT3 phosphorylation. CONCLUSION: A novel injectable saRNA-oligonucleotide that enhances C/EBPα expression successfully reduces tumor burden and simultaneously improves liver function in a clinically relevant liver cirrhosis/HCC model.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Terapia Genética , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , ARN/uso terapéutico , Albúminas/metabolismo , Animales , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/patología , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Inyecciones Intravenosas , Hígado/patología , Cirrosis Hepática/complicaciones , Pruebas de Función Hepática , Neoplasias Hepáticas Experimentales/complicaciones , Neoplasias Hepáticas Experimentales/patología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratas , Ratas Wistar , Receptores de Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo
12.
Mol Ther ; 22(1): 149-59, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23985698

RESUMEN

Despite the progress in our understanding of genes essential for stem cell regulation and development, little is known about the factors secreted by stem cells and their effect on tissue regeneration. In particular, the factors secreted by human CD34+ cells remain to be elucidated. We have approached this challenge by performing a cytokine/growth factor microarray analysis of secreted soluble factors in medium conditioned by adherent human CD34+ cells. Thirty-two abundantly secreted factors have been identified, all of which are associated with cell proliferation, survival, tissue repair, and wound healing. The cultured CD34+ cells expressed known stem cell genes such as Nanog, Oct4, Sox2, c-kit, and HoxB4. The conditioned medium containing the secreted factors prevented cell death in liver cells exposed to liver toxin in vitro via inhibition of the caspase-3 signaling pathway. More importantly, in vivo studies using animal models of liver damage demonstrated that injection of the conditioned medium could repair damaged liver tissue (significant reduction in the necroinflammatory activity), as well as enable the animals to survive. Thus, we demonstrate that medium conditioned by human CD34+ cells has the potential for therapeutic repair of damaged tissue in vivo.


Asunto(s)
Antígenos CD34/metabolismo , Medios de Cultivo Condicionados/farmacología , Células Madre Hematopoyéticas/metabolismo , Regeneración/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Medio de Cultivo Libre de Suero , Citocinas/genética , Citocinas/metabolismo , Humanos , Regeneración Hepática/efectos de los fármacos , Masculino , Cultivo Primario de Células , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Ratas , Transcriptoma
13.
BMC Gastroenterol ; 14: 68, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24712338

RESUMEN

BACKGROUND: Therapeutic gene transfer is currently being evaluated as a potential therapy for inflammatory bowel disease. This study investigates the safety and therapeutic benefit of a locally administered lentiviral vector encoding murine interleukin-10 in altering the onset and relapse of dextran sodium sulfate induced murine colitis. METHODS: Lentiviral vectors encoding the reporter genes firefly-luciferase and murine interleukin-10 were administered by intrarectal instillation, either once or twice following an ethanol enema to facilitate mucosal uptake, on Days 3 and 20 in Balb/c mice with acute and relapsing colitis induced with dextran sulfate sodium (DSS). DSS colitis was characterized using clinical disease activity, macroscopic, and microscopic scores. Bioluminescence optical imaging analysis was employed to examine mucosal lentiviral vector uptake and transgene expression. Levels of tumor necrosis factor-α and interleukin-6 in homogenates of rectal tissue were measured by ELISA. Biodistribution of the lentiviral vector to other organs was evaluated by real time quantitative PCR. RESULTS: Mucosal delivery of lentiviral vector resulted in significant transduction of colorectal mucosa, as shown by bioluminescence imaging analysis. Lentiviral vector-mediated local expression of interleukin-10 resulted in significantly increased levels of this cytokine, as well as reduced levels of tumor necrosis factor-α and interleukin-6, and significantly reduced the clinical disease activity, macroscopic, and microscopic scores of DSS colitis. Systemic biodistribution of locally instilled lentiviral vector to other organs was not detected. CONCLUSIONS: Topically-delivered lentiviral vectors encoding interleukin-10 safely penetrated local mucosal tissue and had therapeutic benefit in this DSS model of murine colitis.


Asunto(s)
Colitis/terapia , Terapia Genética/métodos , Vectores Genéticos , Interleucina-10/genética , Lentivirus , Administración a través de la Mucosa , Administración Rectal , Animales , Colitis/inducido químicamente , Colitis/prevención & control , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Ratones , Ratones Endogámicos BALB C , Recurrencia
14.
Nucleic Acids Res ; 40(15): 7280-90, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22618870

RESUMEN

A vast amount of research on the regulation of gene expression has relied on plasmid reporter assays. In this study, we show that plasmids widely used for this purpose constitutively produce substantial amounts of RNA from a TATA-containing cryptic promoter within the origin of replication. Readthrough of these RNAs into the intended transcriptional unit potently stimulated reporter activity when the inserted test sequence contained a 3' splice site (ss). We show that two human sequences, originally reported to be internal ribosome entry sites and later to instead be promoters, mimic both types of element in dicistronic reporter assays by causing these cryptic readthrough transcripts to splice in patterns that allow efficient translation of the downstream cistron. Introduction of test sequences containing 3' ss into monocistronic luciferase reporter vectors widely used in the study of transcriptional regulation also created the false appearance of promoter function via the same mechanism. Across a large number of variants of these plasmids, we found a very highly significant correlation between reporter activity and levels of such spliced readthrough transcripts. Computational estimation of the frequency of cryptic 3' ss in genomic sequences suggests that misattribution of cis-regulatory function may be a common occurrence.


Asunto(s)
Plásmidos/genética , Secuencias Reguladoras de Ácidos Nucleicos , Origen de Réplica , Transcripción Genética , Regiones no Traducidas 5' , Factor 4G Eucariótico de Iniciación/genética , Genes Reporteros , Células HeLa , Humanos , Regiones Promotoras Genéticas , ARN/biosíntesis , Sitios de Empalme de ARN , Empalme del ARN , Proteína Inhibidora de la Apoptosis Ligada a X/genética
15.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617245

RESUMEN

Background: Glioblastoma (GBM) has a highly immunosuppressive tumor immune microenvironment (TIME), largely mediated by myeloid-derived suppressor cells (MDSCs). Here, we utilized a retroviral replicating vector (RRV) to deliver Interferon Regulatory Factor 8 (IRF8), a master regulator of type 1 conventional dendritic cell (cDC1) development, in a syngeneic murine GBM model. We hypothesized that RRV-mediated delivery of IRF8 could "reprogram" intratumoral MDSCs into antigen-presenting cells (APCs) and thereby restore T-cell responses. Methods: Effects of RRV-IRF8 on survival and tumor growth kinetics were examined in the SB28 murine GBM model. Immunophenotype was analyzed by flow cytometry and gene expression assays. We assayed functional immunosuppression and antigen presentation by ex vivo T-cell-myeloid co-culture. Results: Mice with RRV-IRF8 pre-transduced intracerebral tumors had significantly longer survival and slower tumor growth compared to controls. RRV-IRF8 treated tumors exhibited significant enrichment of cDC1s and CD8+ T-cells. Additionally, myeloid cells derived from RRV-IRF8 tumors showed decreased expression of the immunosuppressive markers Arg1 and IDO1 and demonstrated reduced suppression of naïve T-cell proliferation in ex vivo co-culture, compared to controls. Furthermore, DCs from RRV-IRF8 tumors showed increased antigen presentation compared to those from control tumors. In vivo treatment with azidothymidine (AZT), a viral replication inhibitor, showed that IRF8 transduction in both tumor and non-tumor cells is necessary for survival benefit, associated with a reprogrammed, cDC1- and CD8 T-cell-enriched TIME. Conclusions: Our results indicate that reprogramming of glioma-infiltrating myeloid cells by in vivo expression of IRF8 may reduce immunosuppression and enhance antigen presentation, achieving improved tumor control.

16.
Cancer Sci ; 104(11): 1433-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23962292

RESUMEN

Oncolytic virotherapy using adenoviruses has potential for therapeutic benefits in malignant mesothelioma. However, the downregulation of coxsackie virus/adenovirus receptor (CAR) expression is frequently a critical rate-limiting factor that impedes the effectiveness of adenovirus serotype 5 (Ad5)-based vectors in many cancer types. We evaluated CAR (Ad5 receptor) and CD46 (adenovirus serotype 35 [Ad35] receptor) expression in six human malignant mesothelioma cell lines. Very low CAR expression was observed in MSTO-211H and NCI-H2052 cells, whereas the other cell lines showed strong expression. In contrast, CD46 was highly expressed in all mesothelioma cell lines. On this basis, we replaced the CAR binding sequence of Ad5 with the CD46 binding sequence of Ad35 in the replication-defective adenoviruses and the tumor-specific midkine promoter-regulated oncolytic adenoviruses. By this fiber modification, the infectivity, virus progeny production, and in vitro cytocidal effects of the adenoviruses were significantly enhanced in low CAR-expressing MSTO-211H and NCI-H2052 cells, also resulting in similar or even higher levels in high CAR-expressing mesothelioma cell lines. In MSTO-211H xenograft models, the fiber-modified oncolytic adenovirus significantly enhanced antitumor effect compared to its equivalent Ad5-based vector. Our data demonstrate that Ad35 fiber modification of binding tropism in a midkine promoter-regulated oncolytic Ad5 vector confers transductional targeting to oncolytic adenoviruses, thereby facilitating more effective treatment of malignant mesothelioma.


Asunto(s)
Adenoviridae/genética , Proteínas de la Cápside/genética , Citocinas/genética , Neoplasias Pulmonares/terapia , Mesotelioma/terapia , Virus Oncolíticos/genética , Animales , Línea Celular Tumoral , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Femenino , Células HEK293 , Humanos , Neoplasias Pulmonares/patología , Proteína Cofactora de Membrana/metabolismo , Mesotelioma/patología , Mesotelioma Maligno , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Midkina , Viroterapia Oncolítica , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Carga Tumoral , Acoplamiento Viral , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Gastroenterology ; 142(2): 377-87.e1-5, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22044669

RESUMEN

BACKGROUND & AIMS: The kinase Akt mediates resistance of pancreatic cancer (PaCa) cells to death and is constitutively active (phosphorylated) in cancer cells. Whereas the kinases that activate Akt are well characterized, less is known about phosphatases that dephosporylate and thereby inactivate it. We investigated regulation of Akt activity and cell death by the phosphatases PHLPP1 and PHLPP2 in PaCa cells, mouse models of PaCa, and human pancreatic ductal adenocarcinoma (PDAC). METHODS: We measured the effects of PHLPP overexpression or knockdown with small interfering RNAs on Akt activation and cell death. We examined regulation of PHLPPs by growth factors and reactive oxygen species, as well as associations between PHLPPs and tumorigenesis. RESULTS: PHLPP overexpression inactivated Akt, whereas PHLPP knockdown increased phosphorylation of Akt in PaCa cells. Levels of PHLPPs were greatly reduced in human PDAC and in mouse genetic and xenograft models of PaCa. PHLPP activities in PaCa cells were down-regulated by growth factors and Nox4 reduced nicotinamide adenine dinucleotide phosphate oxidase. PHLPP1 selectively dephosphorylated Akt2, whereas PHLPP2 selectively dephosphorylated Akt1. Akt2, but not Akt1, was up-regulated in PDAC, and Akt2 levels correlated with mortality. Consistent with these results, high levels of PHLPP1, which dephosphorylates Akt2 (but not PHLPP2, which dephosphorylates Akt1), correlated with longer survival times of patients with PDAC. In mice, xenograft tumors derived from PaCa cells that overexpress PHLPP1 (but not PHLPP2) had inactivated Akt, greater extent of apoptosis, and smaller size. CONCLUSIONS: PHLPP1 has tumor suppressive activity and might represent a therapeutic or diagnostic tool for PDAC.


Asunto(s)
Apoptosis , Carcinoma Ductal Pancreático/enzimología , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/enzimología , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Carcinoma Ductal Pancreático/mortalidad , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Transgénicos , Neoplasias Experimentales , Neoplasias Pancreáticas/mortalidad , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/metabolismo
18.
Mol Ther ; 20(9): 1689-98, 2012 09.
Artículo en Inglés | MEDLINE | ID: mdl-22547150

RESUMEN

Retroviral replicating vectors (RRVs) are a nonlytic alternative to oncolytic replicating viruses as anticancer agents, being selective both for dividing cells and for cells that have defects in innate immunity and interferon responsiveness. Tumor cells fit both these descriptions. Previous publications have described a prototype based on an amphotropic murine leukemia virus (MLV), encoding yeast cytosine deaminase (CD) that converts the prodrug 5-fluorocytosine (5-FC) to the potent anticancer drug, 5-fluorouracil (5-FU) in an infected tumor. We report here the selection of one lead clinical candidate based on a general design goal to optimize the genetic stability of the virus and the CD activity produced by the delivered transgene. Vectors were tested for titer, genetic stability, CD protein and enzyme activity, ability to confer susceptibility to 5-FC, and preliminary in vivo antitumor activity and stability. One vector, Toca 511, (aka T5.0002) encoding an optimized CD, shows a threefold increased specific activity in infected cells over infection with the prototype RRV and shows markedly higher genetic stability. Animal testing demonstrated that Toca 511 replicates stably in human tumor xenografts and, after 5-FC administration, causes complete regression of such xenografts. Toca 511 (vocimagene amiretrorepvec) has been taken forward to preclinical and clinical trials.


Asunto(s)
Terapia Genética/métodos , Virus de la Leucemia Murina/genética , Neoplasias Experimentales/terapia , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Flucitosina/metabolismo , Flucitosina/farmacología , Fluorouracilo/metabolismo , Fluorouracilo/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Vectores Genéticos , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Profármacos/metabolismo , Profármacos/farmacología , Estabilidad del ARN , Ratas , Transgenes
19.
Nat Genet ; 32(4): 670-5, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12426566

RESUMEN

Dystrophic epidermolysis bullosa (DEB) is a family of inherited mechano-bullous disorders caused by mutations in the human type VII collagen gene (COL7A1). Individuals with DEB lack type VII collagen and anchoring fibrils, structures that attach epidermis and dermis. The current lack of treatment for DEB is an impetus to develop gene therapy strategies that efficiently transfer and stably express genes delivered to skin cells in vivo. In this study, we delivered and expressed full-length type VII collagen using a self-inactivating minimal lentivirus-based vector. Transduction of lentiviral vectors containing the COL7A1 transgene into recessive DEB (RDEB) keratinocytes and fibroblasts (in which type VII collagen was absent) resulted in persistent synthesis and secretion of type VII collagen. Unlike RDEB parent cells, the gene-corrected cells had normal morphology, proliferative potential, matrix attachment and motility. We used these gene-corrected cells to regenerate human skin on immune-deficient mice. Human skin regenerated by gene-corrected RDEB cells had restored expression of type VII collagen and formation of anchoring fibrils at the dermal-epidermal junction in vivo. These studies demonstrate that it is possible to restore type VII collagen gene expression in RDEB skin in vivo.


Asunto(s)
Colágeno Tipo VII/genética , Colágeno Tipo VII/fisiología , Epidermólisis Ampollosa Distrófica/metabolismo , Adhesión Celular , División Celular , Línea Celular , Movimiento Celular , Transformación Celular Viral , Células Cultivadas , Colágeno Tipo VII/biosíntesis , ADN Complementario , Células Epidérmicas , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/terapia , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/ultraestructura , Técnicas de Transferencia de Gen , Genes Recesivos , Terapia Genética , Vectores Genéticos , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Queratinocitos/ultraestructura , Laminina/metabolismo , Lentivirus/genética , Mutación , Transfección , Transgenes
20.
Anticancer Res ; 43(12): 5311-5317, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030176

RESUMEN

BACKGROUND/AIM: Retroviral replicating vectors (RRV) have exhibited efficient tumor transduction and improved therapeutic benefits in a variety of cancer models. In this study, we validated two RRV created from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV), which use different cell receptors for virus entry, in human ovarian cancer (OC) cells. MATERIALS AND METHODS: Expression levels of the receptors for AMLV (PiT-2) and GALV (PiT-1) in human OC cell lines (A2780, Caov3, RMG-1, SKOV-3), fibroblasts and HEK293 cells were evaluated using quantitative RT-PCR. In vitro RRV-GFP replication was monitored using flow cytometry, and cytotoxicity quantitated using AlamarBlue assay after 5-fluorocytosine treatment of OC cells transduced with RRV expressing the yeast cytosine deaminase prodrug activator gene. In vivo antitumor effect of RRV-mediated prodrug activator gene therapy was investigated in a SKOV-3 subcutaneous tumor model. RESULTS: Quantitative RT-PCR analysis revealed high expression levels of PiT-2 (AMLV receptor) and PiT-1 (GALV receptor) in the RMG-1 and SKOV3 OC cell lines, compared with their levels in non-malignant cells. In RMG-1 and SKOV3 cells, both RRV showed highly efficient RRV replication and spread leading to over 90% transduction by Days 10-13. Additionally, both RRV that express the yeast cytosine deaminase gene demonstrated effective cell killing of RMG-1 and SKOV-3 cells upon treatment with the prodrug 5-fluorocytosine. Notably, RRV-mediated prodrug activator gene therapy showed significant inhibition of subcutaneous SKOV-3 tumor growth in nude mice. CONCLUSION: RRV-mediated prodrug activator gene therapy may be used for treating PiT-expressing human OC.


Asunto(s)
Neoplasias Ováricas , Profármacos , Animales , Ratones , Humanos , Femenino , Línea Celular Tumoral , Profármacos/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Flucitosina/farmacología , Ratones Desnudos , Células HEK293 , Neoplasias Ováricas/terapia , Neoplasias Ováricas/tratamiento farmacológico , Terapia Genética , Virus de la Leucemia del Gibón/genética , Virus de la Leucemia del Gibón/metabolismo , Vectores Genéticos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA