RESUMEN
The inherently quantitative nature of nuclear magnetic resonance (NMR) spectroscopy is one of the most attractive aspects of this analytical technique. Quantitative NMR analyses have typically been limited to high-field (>1 T) applications. The aspects for quantitation at low magnetic fields (<1 mT) have not been thoroughly investigated and are shown to be impacted by the complex signatures that arise at these fields from strong heteronuclear J-couplings. This study investigates quantitation at Earth's magnetic field (â¼50 µT) for a variety of samples in strongly, weakly, and uncoupled spin systems. To achieve accurate results in this regime, the instrumentation, experimental acquisition, processing, and theoretical aspects must be considered and reconciled. Of particular note is the constant field nuclear receptivity equation, which has been re-derived in this study to account for strong coupling and quality factor effects. The results demonstrate that the quantitation of homonuclear molecular groups, determination of heteronuclear pseudoempirical formulas, and mixture analysis are all feasible at Earth's magnetic field in a greatly simplified experimental system.
RESUMEN
A new method for measurement of elemental analysis by nuclear magnetic resonance (NMR) of unknown samples is discussed here as a quick and robust means to measure elemental ratios without the use of internal or external calibration standards. The determination of elemental ratios was done by normalizing the signal intensities by the frequency dependent quality factor (Q) and the gyromagnetic ratios (γ) for each measured nucleus. The correction for the frequency dependence was found by characterizing the output signal of the probe as a function of the quality factor (Q) and the frequency, and the correction for γ was discussed in a previous study. A Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was used for evaluation of the relative signal intensities, which allows for derivation of elemental ratios, and was correspondingly used to simultaneously measure the T2* of samples for an added parameter for more accurate identification of unknown samples.
RESUMEN
Recently, a wide variety of new nanoparticle compositions have been identified as potential plasmonic materials including earth-abundant metals such as aluminum, highly doped semiconductors, as well as metal pnictides. For semiconductor compositions, plasmonic properties may be tuned not only by nanoparticle size and shape, but also by charge carrier density which can be controlled via a variety of intrinsic and extrinsic doping strategies. Current methods to quantitatively determine charge carrier density primarily rely on interpretation of the nanoparticle extinction spectrum. However, interpretation of nanoparticle extinction spectra can be convoluted by factors such as particle ligands, size distribution and/or aggregation state which may impact the charge carrier information extracted. Therefore, alternative methods to quantify charge carrier density may be transformational in the development of these new materials and would facilitate previously inaccessible correlations between particle synthetic routes, crystallographic features, and emergent optoelectronic properties. Here, we report the use of 77Se solid state nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine charge carrier density in a variety of Cu2-xSe nanoparticle compositions and correlate this charge carrier density with particle crystallinity and extinction features. Importantly, we show that significant charge carrier populations are present even in nanoparticles without spectroscopically discernible plasmonic features and with crystal structures indistinguishable from fully reduced Cu2Se. These results highlight the potential impact of the NMR-based carrier density measurement, especially in the study of plasmon emergence in these systems (i.e., at low dopant concentrations).
RESUMEN
Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 106 M-1 cm-1) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.
RESUMEN
A new clathrate type has been discovered in the Ba/Cu/Zn/P system. The crystal structure of the Ba8 M24 P28+δ (M=Cu/Zn) clathrate is composed of the pentagonal dodecahedra common to clathrates along with a unique 22-vertex polyhedron with two hexagonal faces capped by additional partially occupied phosphorus sites. This is the first example of a clathrate compound where the framework atoms are not in tetrahedral or trigonal-pyramidal coordination. In Ba8 M24 P28+δ a majority of the framework atoms are five- and six-coordinated, a feature more common to electron-rich intermetallics. The crystal structure of this new clathrate was determined by a combination of X-ray and neutron diffraction and was confirmed with solid-state 31 Pâ NMR spectroscopy. Based on chemical bonding analysis, the driving force for the formation of this new clathrate is the excess of electrons generated by a high concentration of Zn atoms in the framework. The rattling of guest atoms in the large cages results in a very low thermal conductivity, a unique feature of the clathrate family of compounds.
RESUMEN
Systematic correlation in alkaline-earth carbonate compounds between the deviation of the CO3 units from the perfect D3h symmetry and their (13)C nuclear magnetic resonance (NMR) chemical shift anisotropy (CSA) parameters is established. The (13)C NMR CSA parameters of amorphous calcium carbonate (ACC) are measured using two-dimensional (13)C phase adjusted spinning sidebands (PASS) NMR spectroscopy and are analyzed on the basis of this correlation. The results indicate a distortion of the CO3 units in ACC in the form of an in-plane displacement of the C atom away from the centroid of the O3 triangle, resulting from hydrogen bonding with the surrounding H2O molecules, without significant out-of-plane displacement. Similar distortion for all C atoms in the structure of ACC suggests a uniform spatial disposition of H2O molecules around the CO3 units forming a hydrogen-bonded amorphous network. This amorphous network is stabilized against crystallization by steric frustration, while additives such as Mg presumably provide further stabilization by increasing the energy of dehydration.
RESUMEN
The temperature dependence of the rotational dynamics of P4Se3 molecules in the glass-forming molecular liquid P5Se3 is studied using two-dimensional (31)P nuclear magnetic resonance spectroscopy. Unlike typical molecular glass-forming liquids, the constituent molecules in the P5Se3 liquid perform rapid isotropic rotation without significant translational diffusion in the supercooled regime and this rotational process shows a decoupling in time scale from shear relaxation by nearly six orders of magnitude at the glass transition. This dynamical behavior of liquid-like rotation and localized translation appears to be universal to glass-forming liquids with high-symmetry globular molecules that are characterized by an underlying thermodynamically stable plastic crystal phase.
RESUMEN
A polyphosphide, mP-BaP3, with a unique two-dimensional phosphorus layer has been discovered and characterized. It crystallizes in the monoclinic space group P21/c with unit-cell parameters a=6.486(1), b=7.710(1), c=8.172(2)â Å; ß=104.72(3)°; Z=4. Its phosphorus polyanion can be derived from the strong elongation of 2/3 of the P-P bonds present in the layers of black phosphorus. The unit-cell volume of the mP-BaP3 phase is 1.4% larger than the volume of another polymorph, mS-BaP3, reported more than 40â years ago. The latter phase features the presence of one-dimensional phosphorus chains separated by Ba atoms. The differences in the structures of the phosphorus fragments in both polymorphs of barium triphosphide result in large differences in both the thermal stability of these materials as well as in their properties as evidenced by DSC, (31)P solid-state MAS NMR, UV/Vis, and surface photovoltage spectroscopies, alongside quantum-chemical calculations.
RESUMEN
Pinacolyl alcohol (PA), a key forensic marker for the nerve agent Soman (GD), is a particularly difficult analyte to detect by various analytical methods. In this work, we have explored the reaction between PA and 1,1'-carbonyldiimidazole (CDI) to yield pinacolyl 1H-imidazole-1-carboxylate (PIC), a product that can be conveniently detected by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Regarding its GC-MS profile, this new carbamate derivative of PA possesses favorable chromatographic features such as a sharp peak and a longer retention time (RT = 16.62 min) relative to PA (broad peak and short retention time, RT = 4.1 min). The derivative can also be detected by LC-HRMS, providing an avenue for the analysis of this chemical using this technique where PA is virtually undetectable unless present in large concentrations. From a forensic science standpoint, detection of this low molecular weight alcohol signals the past or latent presence of the nerve agent Soman (GD) in a given matrix (i.e., environmental or biological). The efficiency of the protocol was tested separately in the analysis and detection of PA by EI-GC-MS and LC-HRMS when present at a 10 µg/mL in a soil matrix featured in the 44th PT and in a glycerol-rich liquid matrix featured in the 48th Official Organization for the Prohibition of Chemical Weapons (OPCW) Proficiency Test when present at a 5 µg/mL concentration. In both scenarios, PA was successfully transformed into PIC, establishing the protocol as an additional tool for the analysis of this unnatural and unique nerve agent marker by GC-MS and LC-HRMS.
Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Soman , Soman/análisis , Soman/análogos & derivados , Humanos , Cromatografía Liquida , Imidazoles/química , Agentes Nerviosos/análisis , Agentes Nerviosos/química , Toxicología Forense/métodos , Sustancias para la Guerra Química/análisis , Espectrometría de Masas/métodos , Propanoles/química , Propanoles/análisisRESUMEN
A novel clathrate phase, Ba8Au16P30, was synthesized from its elements. High-resolution powder X-ray diffraction and transmission electron microscopy were used to establish the crystal structure of the new compound. Ba8Au16P30 crystallizes in an orthorhombic superstructure of clathrate-I featuring a complete separation of gold and phosphorus atoms over different crystallographic positions, similar to the Cu-containing analogue, Ba8Cu16P30. Barium cations are trapped inside the large polyhedral cages of the gold-phosphorus tetrahedral framework. X-ray diffraction indicated that one out of 15 crystallographically independent phosphorus atoms appears to be three-coordinate. Probing the local structure and chemical bonding of phosphorus atoms with (31)P solid-state NMR spectroscopy confirmed the three-coordinate nature of one of the phosphorus atomic positions. High-resolution high-angle annular dark-field scanning transmission electron microscopy indicated that the clathrate Ba8Au16P30 is well-ordered on the atomic scale, although numerous twinning and intergrowth defects as well as antiphase boundaries were detected. The presence of such defects results in the pseudo-body-centered-cubic diffraction patterns observed in single-crystal X-ray diffraction experiments. NMR and resistivity characterization of Ba8Au16P30 indicated paramagnetic metallic properties with a room-temperature resistivity of 1.7 mΩ cm. Ba8Au16P30 exhibits a low total thermal conductivity (0.62 W m(-1) K(-1)) and an unprecedentedly low lattice thermal conductivity (0.18 W m(-1) K(-1)) at room temperature. The values of the thermal conductivity for Ba8Au16P30 are significantly lower than the typical values reported for solid crystalline compounds. We attribute such low thermal conductivity values to the presence of a large number of heavy atoms (Au) in the framework and the formation of multiple twinning interfaces and antiphase defects, which are effective scatterers of heat-carrying phonons.
RESUMEN
Barium gold polyphosphide BaAu2P4 was synthesized from elements and structurally characterized by single crystal X-ray diffraction. BaAu2P4 crystallizes in a new structure type, in the orthorhombic space group Fddd (No. 70) with a = 6.517(1) Å, b = 8.867(2) Å, c = 21.844(5) Å. The crystal structure of BaAu2P4 consists of AuP layers separated by layers of Ba atoms. Each AuP layer is composed of infinite ∞(1)(P) chains of unique topology linked together by almost linearly coordinated Au atoms. According to ZintlKlemm formalism, this compound is charge balanced assuming closed shell d10 configuration for Au: Ba2+(Au+)2(P)4. Magnetic and solid state NMR measurements together with quantum-chemical calculations reveal diamagnetic and semiconducting behavior for the investigated polyphosphide, which is as expected for the charged balanced Zintl phase. Electron localization function and crystal orbital Hamilton population analyses reveal strong PP and AuP bonding and almost nonbonding AuAu interactions in BaAu2P4.
RESUMEN
A general approach for enhancing sensitivity of nuclear magnetic resonance sideband separation experiments, such as Two-Dimensional One Pulse (TOP), Magic-Angle Turning (MAT), and Phase Adjust Spinning Sidebands (PASS) experiments, with phase incremented echo-train acquisition (PIETA) is described. This approach is applicable whenever strong inhomogeneous broadenings dominate the unmodulated frequency resonances, such as in non-crystalline solids or in samples with large residual frequency anisotropy. PIETA provides significant sensitivity enhancements while also eliminating spectral artifacts would normally be present with Carr-Purcell-Meiboom-Gill acquisition. Additionally, an intuitive approach is presented for designing and processing echo train acquisition magnetic resonance experiments on rotating samples. Affine transformations are used to relate the two-dimensional signals acquired in TOP, MAT, and PASS experiments to a common coordinate system. Depending on sequence design and acquisition conditions two significant artifacts can arise from truncated acquisition time and discontinuous damping in the T2 decay. Here we show that the former artifact can always be eliminated through selection of a suitable affine transformation, and give the conditions in which the latter can be minimized or removed entirely.
Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Algoritmos , Cobre/química , Histidina/química , Magnesio/química , Potasio/química , Silicatos/químicaRESUMEN
The new Ge(II) cluster [Ge6(µ3-O)4(µ2-OC6H2-2,4,6-Cy3)4](NH3)0.5 (1) and three divalent Group 14 aryloxide derivatives [Ge(OC6H2-2,4,6-Cy3)2]2 (2), [Sn(OC6H2-2,4,6-Cy3)2]2 (3), and [Pb(OC6H2-2,4,6-Cy3)2]2 (4) of the new tricyclohexylphenyloxo ligand, [(-OC6H2-2,4,6-Cy3)2]2 (Cy = cyclohexyl), were synthesized and characterized. Complexes 1-4 were obtained by reaction of the metal bissilylamides M(N(SiMe3)2)2 (M = Ge, Sn, Pb) with 2,4,6-tricyclohexylphenol in hexane at room temperature. If the freshly generated reaction mixture for the synthesis of 2 is stirred in solution for 12 h at room temperature, the cluster [Ge6(µ3-O)4(µ2-OC6H2-2,4,6-Cy3)4](NH3)0.5 (1), which features a rare Ge6O8 core that includes ammonia molecules in non-coordinating positions, is formed. Complexes 3 and 4 were also characterized via119Sn{1H} NMR and 207Pb NMR spectroscopy and feature signals at -280.3 ppm (119Sn{1H}, 25 °C) and 1541.0 ppm (207Pb, 37 °C), respectively. The spectroscopic characterization of 3 and 4 extends known 119Sn parameters for dimeric Sn(II) aryloxides, but data for 207Pb NMR spectra for Pb(II) aryloxides are rare. We present also a rare VT-NMR study of a homoleptic 3-coordinate Pb(II) aryloxide. The crystal structures of 2, 3, and 4 feature interligand Hâ¯H contacts that are similar in number to those of related transition metal derivatives despite the larger size of the group 14 elements.
RESUMEN
There is growing interest in using low-field magnetic resonance experiments for routine chemical characterization. Earth's field NMR is one such technique that can garner structural information and enable sample differentiation with low cost and highly portable designs. The resulting NMR spectra are primarily influenced by J-couplings, resulting in so-called J-coupled spectra (JCS). Many small molecules include atoms with NMR-active nuclei that are quadrupolar either at natural abundance or are often isotopically enriched (e.g.,2H, 6Li, 11B, 14N, 17O, etc.) where the effects of quadrupolar J-couplings and relaxation on JCS of strongly- and weakly-coupled spin systems have not been explored to date. Herein, using a set of seven fluoropyridine samples with unique substitution and J-couplings, we demonstrate that the 14N relaxation rates can induce drastic line-broadening in the JCS. This includes a previously unexplored unique line broadening mechanism enabled by strongly coupled spins at low-field. Numerical simulations are used to model and refine the magnitudes and signs of J-couplings, as well as indirectly determine the 14N relaxation rates in a single 1D experiment that has a higher fidelity than observed in high-field NMR experiments.
RESUMEN
We present an improved and general approach for implementing echo train acquisition (ETA) in magnetic resonance spectroscopy, particularly where the conventional approach of Carr-Purcell-Meiboom-Gill (CPMG) acquisition would produce numerous artifacts. Generally, adding ETA to any N-dimensional experiment creates an N + 1 dimensional experiment, with an additional dimension associated with the echo count, n, or an evolution time that is an integer multiple of the spacing between echo maxima. Here we present a modified approach, called phase incremented echo train acquisition (PIETA), where the phase of the mixing pulse and every other refocusing pulse, φ(P), is incremented as a single variable, creating an additional phase dimension in what becomes an N + 2 dimensional experiment. A Fourier transform with respect to the PIETA phase, φ(P), converts the φ(P) dimension into a Δp dimension where desired signals can be easily separated from undesired coherence transfer pathway signals, thereby avoiding cumbersome or intractable phase cycling schemes where the receiver phase must follow a master equation. This simple modification eliminates numerous artifacts present in NMR experiments employing CPMG acquisition and allows "single-scan" measurements of transverse relaxation and J-couplings. Additionally, unlike CPMG, we show how PIETA can be appended to experiments with phase modulated signals after the mixing pulse.
RESUMEN
Nuclear magnetic resonance (NMR) spectroscopy routinely characterizes the unique spin systems of molecules using a combination of chemical shift and J-coupling interactions for the 1H and 13C nuclei. However, at Earth's magnetic field, chemical shifts are unresolvable and the ability to characterize structure relies solely on the J-couplings. Fortuitously, the J-couplings at Earth's field provides the same spin system information as high field, but only requires detection of the 1H nucleus. We report the first identification of the multiple natural abundance 1H-13C spin systems on organic molecules detected at Earth's magnetic field. The results clearly demonstrate the feasibility of Earth's field NMR to characterize small organic molecules without costly enrichment strategies.
Asunto(s)
Campos Magnéticos , Espectroscopía de Resonancia Magnética/métodosRESUMEN
Structural characterization of the complex [B(ß-pinane)3] (1) reveals non-covalent Hâ¯H contacts that are consistent with the generation of London dispersion energies involving the ß-pinane ligand frameworks. The homolytic fragmentations of 1, and camphane and sabinane analogues ([B(camphane)3] (2) and [B(sabinane)3] (3)) were studied computationally. Isodesmic exchange results showed that London dispersion interactions are highly dependent on the terpene's stereochemistry, with the ß-pinane framework providing the greatest dispersion free energy (ΔG = -7.9 kcal mol-1) with Grimme's dispersion correction (D3BJ) employed. PMe3 was used to coordinate to [B(ß-pinane)3], giving the complex [Me3P-B(ß-pinane)3] (4), which displayed a dynamic coordination equilibrium in solution. The association process was found to be slightly endergonic at 302 K (ΔG = +0.29 kcal mol-1).
Asunto(s)
Boranos , Monoterpenos Bicíclicos , Canfanos , Ligandos , TerpenosRESUMEN
Two-dimensional magic angle flipping (MAF) was employed to measure the Q((n)) distribution in a (29)Si-enriched potassium disilicate glass (K(2)O.2SiO(2)). Relative concentrations of [Q((4))] = 7.2 +/- 0.3%, [Q((3))] = 82.9 +/- 0.1%, and [Q((2))] = 9.8 +/- 0.6% were obtained. Using the thermodynamic model for Q((n)) species disproportionation, these relative concentrations yield an equilibrium constant k(3) = 0.0103 +/- 0.0008, indicating, as expected, that the Q((n)) species distribution is close to binary in the potassium disilicate glass. A Gaussian distribution of isotropic chemical shifts was observed for each Q((n)) species with mean values of -82.74 +/- 0.03, -91.32 +/- 0.01, and -101.67 +/- 0.02 ppm and standard deviations of 3.27 +/- 0.03, 4.19 +/- 0.01, and 5.09 +/- 0.03 ppm for Q((2)), Q((3)), and Q((4)), respectively. Additionally, nuclear shielding anisotropy values of zeta =-85.0 +/- 1.3 ppm, eta = 0.48 +/- 0.02 for Q((2)) and zeta = -74.9 +/- 0.2 ppm, eta = 0.03 +/- 0.01 for Q((3)) were observed in the potassium disilicate glass.
RESUMEN
In recent years, it has been realized that low and ultra-low field (mT-nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrations. Here, we report a low field (50 µT) instrument that employs a linear actuator to shuttle samples between a 1 T prepolarization field and a solenoid detector in a laboratory setting. The current experimental setup is benchmarked using water and 13C-methanol with a single scan detection limit of 2 × 1020 spins (3 µl, 55M H2O) and detection limit of 2.9 × 1019 (200 µl, 617 mM 13C-methanol) spins with signal averaging. The system has a dynamic range of >3 orders of magnitude. Investigations of room-temperature relaxation dynamics of 13C-methanol show that sample dilution can be used in lieu of sample heating to acquire spectra with linewidths comparable to high-temperature spectra. These results indicate that the T1 and T2 mechanisms are governed by both the proton exchange rate and the dissolved oxygen in the sample. Finally, a 2D correlation spectroscopy experiment is reported, performed in the strong coupling regime that resolves the multiple resonances associated with the heteronuclear J-coupling. The spectrum was collected using 10 times less sample and in less than half the time from previous reports in the strong coupling limit.
RESUMEN
The statistics of selenium chain length distribution in GexSe100-x glasses with 5 ≤ x ≤ 20 are investigated using a combination of high-resolution, two-dimensional (77)Se nuclear magnetic resonance (NMR) spectroscopy and quantum chemical calculations. This combined approach allows for the distinction of various selenium chain environments on the basis of subtle but systematic effects of next-nearest neighbors of Se atoms in -Se-Se-Se- linkages on the (77)Se chemical shift tensor parameters. Simulation of the experimental (77)Se NMR spectral line shapes indicates that Se chain speciation in these chalcogenide glasses follows the Flory-Schulz distribution, originally developed for organic chain polymers.