Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Hum Mol Genet ; 22(6): 1074-85, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23208208

RESUMEN

Human mitochondrial DNA polymerase γ (pol γ) is solely responsible for the replication and repair of the mitochondrial genome. Unsurprisingly, alterations in pol γ activity have been associated with mitochondrial diseases such as Alpers syndrome and progressive external ophthalmoplegia. Thus far, predicting the severity of mitochondrial disease based the magnitude of deficiency in pol γ activity has been difficult. In order to understand the relationship between disease severity in patients and enzymatic defects in vitro, we characterized the molecular mechanisms of four pol γ mutations, A957P, A957S, R1096C and R1096H, which have been found in patients suffering from aggressive Alpers syndrome to mild progressive external ophthalmoplegia. The A957P mutant showed the most striking deficiencies in the incorporation efficiency of a correct deoxyribonucleotide triphosphate (dNTP) relative to wild-type pol γ, with less, but still significant incorporation efficiency defects seen in R1096H and R1096C, and only a small decrease in incorporation efficiency observed for A957S. Importantly, this trend matches the disease severity observed in patients very well (approximated as A957P ≫ R1096C ≥ R1096H ≫ A957S, from most severe disease to least severe). Further, the A957P mutation conferred a two orders of magnitude loss of fidelity relative to wild-type pol γ, indicating that a buildup of mitochondrial genomic mutations may contribute to the death in infancy seen with these patients. We conclude that characterizing the unique molecular mechanisms of pol γ deficiency for physiologically important mutant enzymes is important for understanding mitochondrial disease and for predicting disease severity.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Mutación Missense , Biocatálisis , ADN Polimerasa gamma , ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/química , Humanos , Mitocondrias/enzimología , Enfermedades Mitocondriales/patología
2.
J Biol Chem ; 288(20): 14247-14255, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23543747

RESUMEN

Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates.


Asunto(s)
Acroleína/farmacología , Aductos de ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Mitocondrias/enzimología , Dominio Catalítico , Daño del ADN , ADN Polimerasa gamma , Replicación del ADN , Desoxiguanosina/química , Humanos , Peroxidación de Lípido , Modelos Químicos , Mutagénesis , Oligonucleótidos/química , Estrés Oxidativo
3.
J Biol Chem ; 287(12): 9222-9, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22194617

RESUMEN

Cyclobutane thymine dimers (T-T) comprise the majority of DNA damage caused by short wavelength ultraviolet radiation. These lesions generally block replicative DNA polymerases and are repaired by nucleotide excision repair or bypassed by translesion polymerases in the nucleus. Mitochondria lack nucleotide excision repair, and therefore, it is important to understand how the sole mitochondrial DNA polymerase, pol γ, interacts with irreparable lesions such as T-T. We performed in vitro DNA polymerization assays to measure the kinetics of incorporation opposite the lesion and bypass of the lesion by pol γ with a dimer-containing template. Exonuclease-deficient pol γ bypassed thymine dimers with low relative efficiency; bypass was attenuated but still detectable when using exonuclease-proficient pol γ. When bypass did occur, pol γ misincorporated a guanine residue opposite the 3'-thymine of the dimer only 4-fold less efficiently than it incorporated an adenine. Surprisingly, the pol γ exonuclease-proficient enzyme excised the incorrectly incorporated guanine at similar rates irrespective of the nature of the thymines in the template. In the presence of all four dNTPs, pol γ extended the primer after incorporation of two adenines opposite the lesion with relatively higher efficiency compared with extension past either an adenine or a guanine incorporated opposite the 3'-thymine of the T-T. Our results suggest that T-T usually stalls mitochondrial DNA replication but also suggest a mechanism for the introduction of point mutations and deletions in the mitochondrial genomes of chronically UV-exposed cells.


Asunto(s)
Ciclobutanos/química , Daño del ADN/efectos de la radiación , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Mutagénesis/efectos de la radiación , Timina/química , Ciclobutanos/metabolismo , Aductos de ADN/química , Aductos de ADN/genética , Aductos de ADN/metabolismo , ADN Polimerasa gamma , Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Dimerización , Humanos , Cinética , Mitocondrias/química , Mitocondrias/efectos de la radiación , Timina/metabolismo , Rayos Ultravioleta
4.
Biochim Biophys Acta ; 1819(9-10): 970-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22207204

RESUMEN

DNA replication of the mitochondrial genome is unique in that replication is not primed by RNA derived from dedicated primases, but instead by extension of processed RNA transcripts laid down by the mitochondrial RNA polymerase. Thus, the RNA polymerase serves not only to generate the transcripts but also the primers needed for mitochondrial DNA replication. The interface between this transcription and DNA replication is not well understood but must be highly regulated and coordinated to carry out both mitochondrial DNA replication and transcription. This review focuses on the extension of RNA primers for DNA replication by the replication machinery and summarizes the current models of DNA replication in mitochondria as well as the proteins involved in mitochondrial DNA replication, namely, the DNA polymerase γ and its accessory subunit, the mitochondrial DNA helicase, the single-stranded DNA binding protein, topoisomerase I and IIIα and RNaseH1. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.


Asunto(s)
Replicación del ADN/genética , ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN , ARN Polimerasas Dirigidas por ADN , Mitocondrias , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Polimerasa gamma , ADN-Topoisomerasas/genética , ADN-Topoisomerasas/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Humanos , Mitocondrias/enzimología , Mitocondrias/genética , ARN/genética , Transcripción Genética
5.
Hum Mol Genet ; 20(15): 3052-66, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21555342

RESUMEN

Defects in mitochondrial DNA (mtDNA) maintenance comprise an expanding repertoire of polymorphic diseases caused, in part, by mutations in the genes encoding the p140 mtDNA polymerase (POLG), its p55 accessory subunit (POLG2) or the mtDNA helicase (C10orf2). In an exploration of nuclear genes for mtDNA maintenance linked to mitochondrial disease, eight heterozygous mutations (six novel) in POLG2 were identified in one control and eight patients with POLG-related mitochondrial disease that lacked POLG mutations. Of these eight mutations, we biochemically characterized seven variants [c.307G>A (G103S); c.457C>G (L153V); c.614C>G (P205R); c.1105A>G (R369G); c.1158T>G (D386E); c.1268C>A (S423Y); c.1423_1424delTT (L475DfsX2)] that were previously uncharacterized along with the wild-type protein and the G451E pathogenic variant. These seven mutations encode amino acid substitutions that map throughout the protein, including the p55 dimer interface and the C-terminal domain that interacts with the catalytic subunit. Recombinant proteins harboring these alterations were assessed for stimulation of processive DNA synthesis, binding to the p140 catalytic subunit, binding to dsDNA and self-dimerization. Whereas the G103S, L153V, D386E and S423Y proteins displayed wild-type behavior, the P205R and R369G p55 variants had reduced stimulation of processivity and decreased affinity for the catalytic subunit. Additionally, the L475DfsX2 variant, which possesses a C-terminal truncation, was unable to bind the p140 catalytic subunit, unable to bind dsDNA and formed aberrant oligomeric complexes. Our biochemical analysis helps explain the pathogenesis of POLG2 mutations in mitochondrial disease and emphasizes the need to quantitatively characterize the biochemical consequences of newly discovered mutations before classifying them as pathogenic.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Sustitución de Aminoácidos , Western Blotting , Cromatografía en Gel , ADN Polimerasa Dirigida por ADN/química , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína
6.
Mol Pharmacol ; 82(1): 125-33, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22513406

RESUMEN

Two novel thymidine analogs, 3'-fluoro-3'-deoxythymidine (FLT) and 2',3'-didehydro-3'-deoxy-4'-ethynylthymidine (Ed4T), have been investigated as nucleoside reverse transcriptase inhibitors (NRTIs) for treatment of HIV infection. Ed4T seems very promising in phase II clinical trials, whereas toxicity halted FLT development during this phase. To understand these different molecular mechanisms of toxicity, pre-steady-state kinetic studies were used to examine the interactions of FLT and Ed4T with wild-type (WT) human mitochondrial DNA polymerase γ (pol γ), which is often associated with NRTI toxicity, as well as the viral target protein, WT HIV-1 reverse transcriptase (RT). We report that Ed4T-triphosphate (TP) is the first analog to be preferred over native nucleotides by RT but to experience negligible incorporation by WT pol γ, with an ideal balance between high antiretroviral efficacy and minimal host toxicity. WT pol γ could discriminate Ed4T-TP from dTTP 12,000-fold better than RT, with only an 8.3-fold difference in discrimination being seen for FLT-TP. A structurally related NRTI, 2',3'-didehydro-2',3'-dideoxythymidine, is the only other analog favored by RT over native nucleotides, but it exhibits only a 13-fold difference (compared with 12,000-fold for Ed4T) in discrimination between the two enzymes. We propose that the 4'-ethynyl group of Ed4T serves as an enzyme selectivity moiety, critical for discernment between RT and WT pol γ. We also show that the pol γ mutation R964C, which predisposes patients to mitochondrial toxicity when receiving 2',3'-didehydro-2',3'-dideoxythymidine to treat HIV, produced some loss of discrimination for FLT-TP and Ed4T-TP. These molecular mechanisms of analog incorporation, which are critical for understanding pol γ-related toxicity, shed light on the unique toxicity profiles observed during clinical trials.


Asunto(s)
Fármacos Anti-VIH/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/enzimología , Nucleótidos/antagonistas & inhibidores , Inhibidores de la Transcriptasa Inversa/farmacología , ADN Polimerasa gamma , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Didesoxinucleósidos/farmacología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Transcriptasa Inversa del VIH/metabolismo , VIH-1/efectos de los fármacos , VIH-1/metabolismo , Humanos , Cinética , Estavudina/análogos & derivados , Estavudina/farmacología
7.
J Biol Chem ; 286(36): 31490-500, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21778232

RESUMEN

During DNA synthesis, DNA polymerases must select against ribonucleotides, present at much higher levels compared with deoxyribonucleotides. Most DNA polymerases are equipped to exclude ribonucleotides from their active site through a bulky side chain residue that can sterically block the 2'-hydroxyl group of the ribose ring. However, many nuclear replicative and repair DNA polymerases incorporate ribonucleotides into DNA, suggesting that the exclusion mechanism is not perfect. In this study, we show that the human mitochondrial DNA polymerase γ discriminates ribonucleotides efficiently but differentially based on the base identity. Whereas UTP is discriminated by 77,000-fold compared with dTTP, the discrimination drops to 1,100-fold for GTP versus dGTP. In addition, the efficiency of the enzyme was reduced 3-14-fold, depending on the identity of the incoming nucleotide, when it extended from a primer containing a 3'-terminal ribonucleotide. DNA polymerase γ is also proficient in performing single-nucleotide reverse transcription reactions from both DNA and RNA primer terminus, although its bypass efficiency is significantly diminished with increasing stretches of ribonucleotides in template DNA. Furthermore, we show that the E895A mutant enzyme is compromised in its ability to discriminate ribonucleotides, mainly due to its defects in deoxyribonucleoside triphosphate binding, and is also a poor reverse transcriptase. The potential biochemical defects of a patient harboring a disease mutation in the same amino acid (E895G) are discussed.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Transcripción Reversa , Ribonucleótidos/metabolismo , ADN Polimerasa gamma , ADN Mitocondrial/biosíntesis , ADN Polimerasa Dirigida por ADN/genética , Desoxirribonucleótidos/metabolismo , Humanos , Mutación Missense , Especificidad por Sustrato
8.
Antimicrob Agents Chemother ; 56(3): 1630-4, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22155823

RESUMEN

The potent antiretroviral 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a promising experimental agent for treating HIV infection. Pre-steady-state kinetics were used to characterize the interaction of EFdA-triphosphate (EFdA-TP) with human mitochondrial DNA polymerase γ (Pol γ) to assess the potential for toxicity. Pol γ incorporated EFdA-TP 4,300-fold less efficiently than dATP, with an excision rate similar to ddATP. This strongly indicates EFdA is a poor Pol γ substrate, suggesting minimal Pol γ-mediated toxicity, although this should be examined under clinical settings.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiadenosinas/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Secuencia de Bases , ADN Polimerasa gamma , Desoxiadenosinas/metabolismo , Desoxiadenosinas/toxicidad , Transcriptasa Inversa del VIH/metabolismo , VIH-1/fisiología , Humanos , Cinética , Mitocondrias/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Inhibidores de la Transcriptasa Inversa/metabolismo , Inhibidores de la Transcriptasa Inversa/toxicidad
9.
Extremophiles ; 15(2): 245-52, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21274582

RESUMEN

Minichromosome maintenance (MCM) helicases are thought to function as the replicative helicases in archaea and eukarya, unwinding the duplex DNA in the front of the replication fork. The archaeal MCM helicase can be divided into three parts, the N-terminal, catalytic, and C-terminal regions. The N-terminal part of the protein is divided into three domains, A, B, and C, and was shown to be involved in protein multimerization and binding to single- and double-stranded DNA. Two Asp residues found in domain C are conserved among MCM proteins from different archaea. These residues are located in a loop at the interface with domain A. Mutations of these residues in the Methanothermobacter thermautotrophicus MCM protein, Asp202 and Asp203, to Asn result in a significant reduction in the ability of the enzyme to bind DNA and in lower thermal stability. However, the mutant proteins retained helicase and ATPase activities. Further investigation of the DNA binding revealed that the presence of ATP rescues the DNA binding deficiencies by these mutant proteins. Possible roles of these conserved residues in MCM function are discussed.


Asunto(s)
Ácido Aspártico/química , ADN Helicasas/química , Methanobacteriaceae/enzimología , Proteína 1 de Mantenimiento de Minicromosoma/química , Secuencia de Aminoácidos , Rastreo Diferencial de Calorimetría/métodos , Cromatografía en Gel , Dicroismo Circular/métodos , ADN/química , Análisis Mutacional de ADN , ADN de Cadena Simple/genética , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
10.
Methods ; 51(4): 379-84, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20176107

RESUMEN

More than 150 different point mutations in POLG, the gene encoding the human mitochondrial DNA polymerase gamma (pol gamma), cause a broad spectrum of childhood and adult onset diseases like Alpers syndrome, ataxia-neuropathy syndrome and progressive external ophthalmoplegia. These disease mutations can affect the pol gamma enzyme's properties in numerous ways, thus potentially influencing the severity of the disease. Hence, a detailed characterization of disease mutants will greatly assist researchers and clinicians to develop a clear understanding of the functional defects caused by these mutant enzymes. Experimental approaches for characterizing the wild-type (WT) and mutant pol gamma enzymes are extensively described in this manuscript. The methods start with construction and purification of the recombinant wild-type and mutant forms of pol gamma protein, followed by assays to determine its structural integrity and thermal stability. Next, the biochemical characterization of these enzymes is described in detail, which includes measuring the purified enzyme's catalytic activity, its steady-state kinetic parameters and DNA binding activity, and determining the physical and functional interaction of these pol gamma proteins with the p55 accessory subunit.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/aislamiento & purificación , Mutación , Secuencia de Bases , ADN Polimerasa gamma , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Estabilidad de Enzimas , Humanos , Técnicas In Vitro , Cinética , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Subunidades de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
11.
Archaea ; 2010: 505693, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21151660

RESUMEN

The minichromosome maintenance (MCM) complex is thought to function as the replicative helicase in archaea, separating the two strands of chromosomal DNA during replication. The catalytic activity resides within the C-terminal region of the MCM protein, while the N-terminal portion plays an important role in DNA binding and protein multimerization. An alignment of MCM homologues from several archaeal species revealed a number of conserved amino acids. Here several of the conserved residues located on the surface of the helicase have been mutated and their roles in MCM functions determined. It was found that some mutations result in increased affinity for ssDNA while the affinity for dsDNA is decreased. Other mutants exhibit the opposite effect. Thus, the data suggest that these conserved surface residues may participate in MCM-DNA interactions.


Asunto(s)
ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , ADN/metabolismo , Methanobacteriaceae/enzimología , Mutación Puntual , Secuencia de Aminoácidos , Secuencia Conservada , ADN Helicasas/química , Replicación del ADN , Methanobacteriaceae/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
12.
Nucleic Acids Res ; 36(4): 1309-20, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18184696

RESUMEN

Minichromosome maintenance (MCM) helicases are the presumptive replicative helicases, thought to separate the two strands of chromosomal DNA during replication. In archaea, the catalytic activity resides within the C-terminal region of the MCM protein. In Methanothermobacter thermautotrophicus the N-terminal portion of the protein was shown to be involved in protein multimerization and binding to single and double stranded DNA. MCM homologues from many archaeal species have highly conserved predicted amino acid similarity in a loop located between beta7 and beta8 in the N-terminal part of the molecule. This high degree of conservation suggests a functional role for the loop. Mutational analysis and biochemical characterization of the conserved residues suggest that the loop participates in communication between the N-terminal portion of the helicase and the C-terminal catalytic domain. Since similar residues are also conserved in the eukaryotic MCM proteins, the data presented here suggest a similar coupling between the N-terminal and catalytic domain of the eukaryotic enzyme.


Asunto(s)
Proteínas Arqueales/química , ADN Helicasas/química , Proteínas de Unión al ADN/química , Methanobacteriaceae/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia Conservada , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína
13.
Antimicrob Agents Chemother ; 53(6): 2610-2, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19364868

RESUMEN

The R964C mutation of human DNA polymerase gamma was recently linked to stavudine (d4T)-mediated mitochondrial toxicity. We utilized pre-steady-state kinetics to determine the effect of this mutation on incorporation of natural substrate dTTP and the active metabolite of d4T (d4TTP). The R964C polymerase gamma holoenzyme demonstrated a 33% decrease in dTTP incorporation efficiency and a threefold-lower d4TTP discrimination relative to that of the wild-type polymerase gamma, providing a mechanistic basis for genetic predisposition to nucleoside reverse transcriptase inhibitor toxicity.


Asunto(s)
Fármacos Anti-VIH/toxicidad , ADN Polimerasa Dirigida por ADN/genética , Mitocondrias/efectos de los fármacos , Mutación , Estavudina/toxicidad , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Nucleótidos de Timina
14.
Nucleic Acids Res ; 33(15): 4940-50, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16150924

RESUMEN

The origin recognition complex, Cdc6 and the minichromosome maintenance (MCM) complex play essential roles in the initiation of eukaryotic DNA replication. Homologs of these proteins may play similar roles in archaeal replication initiation. While the interactions among the eukaryotic initiation proteins are well documented, the protein-protein interactions between the archaeal proteins have not yet been determined. Here, an extensive structural and functional analysis of the interactions between the Methanothermobacter thermautotrophicus MCM and the two Cdc6 proteins (Cdc6-1 and -2) identified in the organism is described. The main contact between Cdc6 and MCM occurs via the N-terminal portion of the MCM protein. It was found that Cdc6-MCM interaction, but not Cdc6-DNA binding, plays the predominant role in regulating MCM helicase activity. In addition, the data showed that the interactions with MCM modulate the autophosphorylation of Cdc6-1 and -2. The results also suggest that MCM and DNA may compete for Cdc6-1 protein binding. The implications of these observations for the initiation of archaeal DNA replication are discussed.


Asunto(s)
Proteínas Arqueales/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Archaea/genética , Proteínas Arqueales/química , ADN Helicasas/química , Replicación del ADN , Proteínas de Unión al ADN/química , Methanobacteriaceae/enzimología , Complejo de Reconocimiento del Origen , Fosforilación , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos
15.
J Mol Biol ; 346(2): 389-94, 2005 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-15670590

RESUMEN

The minichromosome maintenance (MCM) proteins are essential for replication initiation and elongation in eukarya and archaea. There are six MCM proteins in eukaryotes, and MCM complexes are believed to unwind DNA during chromosomal DNA replication. However, the mechanism and structure of the MCM complexes are not known. Only one MCM is found in the archaeon Methanothermobacter thermautotrophicus (mtMCM), and this provides a simpler system for study. The crystal structure of a mtMCM N-terminal fragment has been solved, but surprisingly only subtle structural changes were seen between the wild-type protein and one having a mutation corresponding to the yeast MCM5 bob1 mutation. The bob1 mutation bypasses the phosphorylation required for activation of MCM in yeast. We have used electron microscopy and three-dimensional reconstruction to examine a number of different fragments of mtMCM, and can visualize a large conformational change within the N-terminal fragment. This offers new insight into the conformational dynamics of MCM and the phosphorylation-bypass phenotype in yeast.


Asunto(s)
Methanobacteriaceae/química , Factores de Transcripción/química , Cristalografía por Rayos X , Methanobacteriaceae/genética , Microscopía Electrónica , Modelos Moleculares , Mutación , Fragmentos de Péptidos/química , Fosforilación , Conformación Proteica , Factores de Transcripción/genética
16.
Methods Mol Biol ; 1351: 19-26, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26530671

RESUMEN

Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis.


Asunto(s)
Reparación del ADN/genética , Replicación del ADN/genética , ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/genética , Electroforesis en Gel Bidimensional/métodos , Daño del ADN/genética , ADN Polimerasa gamma , ADN Mitocondrial/biosíntesis , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidación-Reducción
17.
Aging Cell ; 11(3): 456-66, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22296597

RESUMEN

RECQL4 is associated with Rothmund-Thomson Syndrome (RTS), a rare autosomal recessive disorder characterized by premature aging, genomic instability, and cancer predisposition. RECQL4 is a member of the RecQ helicase family, and has many similarities to WRN protein, which is also implicated in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial reserve capacity after lentiviral knockdown of RECQL4 in two different primary cell lines. Additionally, biochemical assays with RECQL4, mitochondrial transcription factor A, and mitochondrial DNA polymerase γ showed that the polymerase inhibited RECQL4's helicase activity. RECQL4 is the first 3'-5' RecQ helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Factores de Edad , Anciano de 80 o más Años , Animales , Fraccionamiento Celular/métodos , Línea Celular Tumoral , Daño del ADN , Inestabilidad Genómica , Células HeLa , Humanos , Ratones
18.
Mitochondrion ; 11(6): 929-34, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21856450

RESUMEN

The c.1550g→t mutation in the POLG gene causing the G517V substitution has been reported by many groups to be associated with a variety of mitochondrial diseases, including autosomal dominant and recessive forms of ataxia neuropathy, myopathy and microcephaly, progressive external ophthalmoplegia, diabetes, strokes, hypotonia, and epilepsy. However, the variable disease presentation and age of onset raises suspicion of its pathogenicity. Because of the varied reported associated symptoms and request from physicians to address the consequence of this mutation, we have carried out the biochemical analysis of the purified recombinant human DNA polymerase γ protein harboring the G517V substitution. These analyses revealed that the G517V mutant enzyme retained 80-90% of wild-type DNA polymerase activity, in addition to its functional interaction with the p55 accessory subunit. DNA binding by the mutant was also only slightly lower than the wild-type enzyme. Our data suggest that the G517V mutation by itself in pol γ most likely does not have a role in mitochondrial disorders.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación Missense , Sustitución de Aminoácidos , ADN/metabolismo , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/aislamiento & purificación , Glicina/genética , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Valina/genética
19.
J Biol Chem ; 284(29): 19501-10, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19478085

RESUMEN

Forty-five different point mutations in POLG, the gene encoding the catalytic subunit of the human mitochondrial DNA polymerase (pol gamma), cause the early onset mitochondrial DNA depletion disorder, Alpers syndrome. Sequence analysis of the C-terminal polymerase region of pol gamma revealed a cluster of four Alpers mutations at highly conserved residues in the thumb subdomain (G848S, c.2542g-->a; T851A, c.2551a-->g; R852C, c.2554c-->t; R853Q, c.2558g-->a) and two Alpers mutations at less conserved positions in the adjacent palm subdomain (Q879H, c.2637g-->t and T885S, c.2653a-->t). Biochemical characterization of purified, recombinant forms of pol gamma revealed that Alpers mutations in the thumb subdomain reduced polymerase activity more than 99% relative to the wild-type enzyme, whereas the palm subdomain mutations retained 50-70% wild-type polymerase activity. All six mutant enzymes retained physical and functional interaction with the pol gamma accessory subunit (p55), and none of the six mutants exhibited defects in misinsertion fidelity in vitro. However, differential DNA binding by these mutants suggests a possible orientation of the DNA with respect to the polymerase during catalysis. To our knowledge this study represents the first structure-function analysis of the thumb subdomain in pol gamma and examines the consequences of mitochondrial disease mutations in this region.


Asunto(s)
Replicación del ADN/genética , ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/genética , Mutación , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Catálisis , Línea Celular , Dicroismo Circular , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Esclerosis Cerebral Difusa de Schilder/genética , Humanos , Immunoblotting , Cinética , Datos de Secuencia Molecular , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Spodoptera
20.
J Bacteriol ; 188(12): 4577-80, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16740965

RESUMEN

The Cdc6 proteins from the archaeon Methanothermobacter thermautotrophicus were previously shown to bind double-stranded DNA. It is shown here that the proteins also bind single-stranded DNA. Using minichromosome maintenance (MCM) helicase mutant proteins unable to bind DNA, it was found that the interaction of MCM with Cdc6 inhibits the DNA binding activity of Cdc6.


Asunto(s)
Proteínas Arqueales/fisiología , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/fisiología , Replicación del ADN , ADN de Archaea/metabolismo , Proteínas de Unión al ADN/metabolismo , Methanobacteriaceae/genética , Proteínas Arqueales/metabolismo , ADN de Archaea/biosíntesis , Methanobacteriaceae/enzimología , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA