Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mol Genet ; 26(R2): R208-R215, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28977451

RESUMEN

It has been known for over a century that chromatin is not randomly distributed within the nucleus. However, the question of how DNA is folded and the influence of such folding on nuclear processes remain topics of intensive current research. A longstanding, unanswered question is whether nuclear organization is simply a reflection of nuclear processes such as transcription and replication, or whether chromatin is folded by independent mechanisms and this per se encodes function? Evidence is emerging that both may be true. Here, using the α-globin gene cluster as an illustrative model, we provide an overview of the most recent insights into the layers of genome organization across different scales and how this relates to gene activity.


Asunto(s)
Componentes Genómicos/genética , Genoma/genética , Genoma/fisiología , Animales , Núcleo Celular/genética , Núcleo Celular/fisiología , Cromatina/genética , Cromatina/fisiología , ADN/genética , Replicación del ADN/genética , Humanos , Familia de Multigenes/genética , Conformación de Ácido Nucleico , Transcripción Genética/genética , Transcripción Genética/fisiología , Globinas alfa/genética
2.
Genome Res ; 20(8): 1064-83, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20566737

RESUMEN

Coordination of cellular processes through the establishment of tissue-specific gene expression programs is essential for lineage maturation. The basic helix-loop-helix hemopoietic transcriptional regulator TAL1 (formerly SCL) is required for terminal differentiation of red blood cells. To gain insight into TAL1 function and mechanisms of action in erythropoiesis, we performed ChIP-sequencing and gene expression analyses from primary fetal liver erythroid cells. We show that TAL1 coordinates expression of genes in most known red cell-specific processes. The majority of TAL1's genomic targets require direct DNA-binding activity. However, one-fifth of TAL1's target sequences, mainly among those showing high affinity for TAL1, can recruit the factor independently of its DNA binding activity. An unbiased DNA motif search of sequences bound by TAL1 identified CAGNTG as TAL1-preferred E-box motif in erythroid cells. Novel motifs were also characterized that may help distinguish activated from repressed genes and suggest a new mechanism by which TAL1 may be recruited to DNA. Finally, analysis of recruitment of GATA1, a protein partner of TAL1, to sequences occupied by TAL1 suggests that TAL1's binding is necessary prior or simultaneous to that of GATA1. This work provides the framework to study regulatory networks leading to erythroid terminal maturation and to model mechanisms of action of tissue-specific transcription factors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Eritroides/metabolismo , Eritropoyesis/genética , Regulación de la Expresión Génica , Genoma , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Animales , Secuencia de Bases , Elementos E-Box/genética , Expresión Génica , Técnicas de Sustitución del Gen , Estudio de Asociación del Genoma Completo , Ratones , Datos de Secuencia Molecular , Proteína 1 de la Leucemia Linfocítica T Aguda
3.
PLoS One ; 17(1): e0261950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34995303

RESUMEN

Mouse embryonic stem cells (mESCs) can be manipulated in vitro to recapitulate the process of erythropoiesis, during which multipotent cells undergo lineage specification, differentiation and maturation to produce erythroid cells. Although useful for identifying specific progenitors and precursors, this system has not been fully exploited as a source of cells to analyse erythropoiesis. Here, we establish a protocol in which characterised erythroblasts can be isolated in a scalable manner from differentiated embryoid bodies (EBs). Using transcriptional and epigenetic analysis, we demonstrate that this system faithfully recapitulates normal primitive erythropoiesis and fully reproduces the effects of natural and engineered mutations seen in primary cells obtained from mouse models. We anticipate this system to be of great value in reducing the time and costs of generating and maintaining mouse lines in a number of research scenarios.


Asunto(s)
Diferenciación Celular , Cuerpos Embrioides/metabolismo , Eritroblastos/metabolismo , Eritropoyesis , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismo , Animales , Línea Celular , Cuerpos Embrioides/citología , Eritroblastos/citología , Ratones , Células Madre Embrionarias de Ratones/citología
4.
Curr Opin Genet Dev ; 67: 18-24, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33221670

RESUMEN

The mammalian globin gene clusters provide a paradigm for studying the relationship between genome structure and function. As blood stem cells undergo lineage specification and differentiation to form red blood cells, the chromatin structure and expression of the α-globin cluster change. The gradual activation of the α-globin genes in well-defined cell populations has enabled investigation of the structural and functional roles of its enhancers, promoters and boundary elements. Recent studies of gene regulatory processes involving these elements at the mouse α-globin cluster have brought new insights into the general principles underlying the three-dimensional structure of the genome and its relationship to gene expression throughout time.


Asunto(s)
Cromatina/genética , Genoma/genética , Regiones Promotoras Genéticas/genética , Globinas alfa/genética , Animales , Regulación de la Expresión Génica/genética , Ratones , Secuencias Reguladoras de Ácidos Nucleicos
5.
Nat Commun ; 12(1): 4439, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290235

RESUMEN

The α- and ß-globin loci harbor developmentally expressed genes, which are silenced throughout post-natal life. Reactivation of these genes may offer therapeutic approaches for the hemoglobinopathies, the most common single gene disorders. Here, we address mechanisms regulating the embryonically expressed α-like globin, termed ζ-globin. We show that in embryonic erythroid cells, the ζ-gene lies within a ~65 kb sub-TAD (topologically associating domain) of open, acetylated chromatin and interacts with the α-globin super-enhancer. By contrast, in adult erythroid cells, the ζ-gene is packaged within a small (~10 kb) sub-domain of hypoacetylated, facultative heterochromatin within the acetylated sub-TAD and that it no longer interacts with its enhancers. The ζ-gene can be partially re-activated by acetylation and inhibition of histone de-acetylases. In addition to suggesting therapies for severe α-thalassemia, these findings illustrate the general principles by which reactivation of developmental genes may rescue abnormalities arising from mutations in their adult paralogues.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Activación Transcripcional , Globinas zeta/genética , Acetilación , Animales , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Células Eritroides/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Globinas alfa/genética
6.
Blood ; 112(4): 1056-67, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18550854

RESUMEN

Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding-independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , ADN/metabolismo , Hematopoyesis , Proteínas Proto-Oncogénicas/fisiología , Anemia/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión/genética , Diferenciación Celular , Embrión de Mamíferos , Eritrocitos/citología , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda
7.
Nat Commun ; 9(1): 3849, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242161

RESUMEN

Self-interacting chromatin domains encompass genes and their cis-regulatory elements; however, the three-dimensional form a domain takes, whether this relies on enhancer-promoter interactions, and the processes necessary to mediate the formation and maintenance of such domains, remain unclear. To examine these questions, here we use a combination of high-resolution chromosome conformation capture, a non-denaturing form of fluorescence in situ hybridisation and super-resolution imaging to study a 70 kb domain encompassing the mouse α-globin regulatory locus. We show that this region forms an erythroid-specific, decompacted, self-interacting domain, delimited by frequently apposed CTCF/cohesin binding sites early in terminal erythroid differentiation, and does not require transcriptional elongation for maintenance of the domain structure. Formation of this domain does not rely on interactions between the α-globin genes and their major enhancers, suggesting a transcription-independent mechanism for establishment of the domain. However, absence of the major enhancers does alter internal domain interactions. Formation of a loop domain therefore appears to be a mechanistic process that occurs irrespective of the specific interactions within.


Asunto(s)
Cromatina/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Células Eritroides/metabolismo , Hibridación Fluorescente in Situ , Ratones , Cultivo Primario de Células , Dominios Proteicos , Globinas alfa/genética
8.
Nat Cell Biol ; 19(8): 952-961, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28737770

RESUMEN

The genome is organized via CTCF-cohesin-binding sites, which partition chromosomes into 1-5 megabase (Mb) topologically associated domains (TADs), and further into smaller sub-domains (sub-TADs). Here we examined in vivo an ∼80 kb sub-TAD, containing the mouse α-globin gene cluster, lying within a ∼1 Mb TAD. We find that the sub-TAD is flanked by predominantly convergent CTCF-cohesin sites that are ubiquitously bound by CTCF but only interact during erythropoiesis, defining a self-interacting erythroid compartment. Whereas the α-globin regulatory elements normally act solely on promoters downstream of the enhancers, removal of a conserved upstream CTCF-cohesin boundary extends the sub-TAD to adjacent upstream CTCF-cohesin-binding sites. The α-globin enhancers now interact with the flanking chromatin, upregulating expression of genes within this extended sub-TAD. Rather than acting solely as a barrier to chromatin modification, CTCF-cohesin boundaries in this sub-TAD delimit the region of chromatin to which enhancers have access and within which they interact with receptive promoters.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Embrionarias/metabolismo , Células Eritroides/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas Represoras/metabolismo , Globinas alfa/metabolismo , Animales , Sitios de Unión , Antígenos de Grupos Sanguíneos/metabolismo , Factor de Unión a CCCTC , Línea Celular , Elementos de Facilitación Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Genotipo , Masculino , Ratones Endogámicos C57BL , Familia de Multigenes , Mutación , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Transfección , Globinas alfa/genética , Cohesinas
9.
Nat Genet ; 48(8): 895-903, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27376235

RESUMEN

Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. These super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation, without clear evidence of synergistic or higher-order effects. Our study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Células Eritroides/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Globinas alfa/genética , Animales , Cromatina/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA