Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Infect Dis ; 24(1): 646, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937708

RESUMEN

INTRODUCTION: When COVID-19 hit the world in 2019, an enhanced focus on diagnostic testing for SARS-CoV-2 was essential for a successful pandemic response. Testing laboratories stretched their capabilities for the new coronavirus by adopting different test methods. The necessity of having external quality assurance (EQA) mechanisms was even more critical due to this rapid expansion. However, there was a lack of experience in providing the necessary SARS-CoV-2 EQA materials, especially in locations with constrained resources. OBJECTIVE: We aimed to create a PT (Proficiency testing) programme based on the Dried Tube Specimens (DTS) method that would be a practical option for molecular based SARS-CoV-2 EQA in Low- and Middle-Income Countries. METHODS: Based on previous ISO/IEC 17043:2010 accreditation experiences and with assistance from the US Centers for Disease Control and Prevention, The Supranational Reference Laboratory of Uganda (adapted the DTS sample preparation method and completed a pilot EQA program between 2020 and 2021. Stability and panel validation testing was conducted on the designed materials before shipping to pilot participants in six African countries. Participants received a panel containing five SARS-CoV-2 DTS samples, transported at ambient conditions. Results submitted by participants were compared to validation results. Participants were graded as satisfactory (≥ 80%) or unsatisfactory (< 80%) and performance reports disseminated. RESULTS: Our SARS-CoV-2 stability experiments showed that SARS-CoV-2 RNA was stable (-15 to -25 °C, 4 to 8 °C, (18 to 28 °C) room temperature and 35 to 38 °C) as well as DTS panels (4 to 8 °C, 18 to 28 °C, 35 to 38 °C and 45 °C) for a period of 4 weeks. The SARS-CoV-2 DTS panels were successfully piloted in 35 test sites from Zambia, Malawi, Mozambique, Nigeria, and Seychelles. The pilot results of the participants showed good accuracy, with an average of 86% (30/35) concordance with the original SARS CoV-2 expectations. CONCLUSION: The SARS-CoV-2 DTS PT panel is reliable, stable at ambient temperature, simple to prepare and requires minimal resources.


Asunto(s)
COVID-19 , Países en Desarrollo , Ensayos de Aptitud de Laboratorios , SARS-CoV-2 , Manejo de Especímenes , Humanos , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Manejo de Especímenes/métodos , Manejo de Especímenes/normas , Prueba de COVID-19/métodos , Uganda , Proyectos Piloto
2.
BMC Infect Dis ; 24(1): 233, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383310

RESUMEN

BACKGROUND: Tuberculosis (TB) is a major cause of mortality worldwide. Children and people living with HIV (PLHIV) have an increased risk of mortality, particularly in the absence of rapid diagnosis. The main challenges of diagnosing TB in these populations are due to the unspecific and paucibacillary disease presentation and the difficulty of obtaining respiratory samples. Thus, novel diagnostic strategies, based on non-respiratory specimens could improve clinical decision making and TB outcomes in high burden TB settings. We propose a multi-country, prospective diagnostic evaluation study with a nested longitudinal cohort evaluation to assess the performance of a new stool-based qPCR, developed by researchers at Baylor College of Medicine (Houston, Texas, USA) for TB bacteriological confirmation with promising results in pilot studies. METHODS: The study will take place in high TB/HIV burden countries (Mozambique, Eswatini and Uganda) where we will enroll, over a period of 30 months, 650 PLHIV (> 15) and 1295 children under 8 years of age (irrespective of HIV status) presenting pressumptive TB. At baseline, all participants will provide clinical history, complete a physical assessment, and undergo thoracic chest X-ray imaging. To obtain bacteriological confirmation, participants will provide respiratory samples (1 for adults, 2 in children) and 1 stool sample for Xpert Ultra MTB/RIF (Cepheid, Sunnyvale, CA, USA). Mycobacterium tuberculosis (M.tb) liquid culture will only be performed in respiratory samples and lateral flow lipoarabinomannan (LF-LAM) in urine following WHO recommendations. Participants will complete 2 months follow-up if they are not diagnosed with TB, and 6 months if they are. For analytical purposes, the participants in the pediatric cohort will be classified into "confirmed tuberculosis", "unconfirmed tuberculosis" and "unlikely tuberculosis". Participants of the adult cohort will be classified as "bacteriologically confirmed TB", "clinically diagnosed TB" or "not TB". We will assess accuracy of the novel qPCR test compared to bacteriological confirmation and Tb diagnosis irrespective of laboratory results. Longitudinal qPCR results will be analyzed to assess its use as treatment response monitoring. DISCUSSION: The proposed stool-based qPCR is an innovation because both the strategy of using a non-sputum based sample and a technique specially designed to detect M.tb DNA in stool. PROTOCOL REGISTRATION DETAILS: ClinicalTrials.gov Identifier: NCT05047315.


Asunto(s)
Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Adulto , Niño , Humanos , Esuatini , Infecciones por VIH/complicaciones , Infecciones por VIH/diagnóstico , Mozambique , Estudios Multicéntricos como Asunto , Estudios Prospectivos , Sensibilidad y Especificidad , Tuberculosis/diagnóstico , Tuberculosis Pulmonar/diagnóstico , Uganda
3.
BMC Genomics ; 23(1): 561, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931954

RESUMEN

BACKGROUND: Mycobacterium tuberculosis presents several lineages each with distinct characteristics of evolutionary status, transmissibility, drug resistance, host interaction, latency, and vaccine efficacy. Whole genome sequencing (WGS) has emerged as a new diagnostic tool to reliably inform the occurrence of phylogenetic lineages of Mycobacterium tuberculosis and examine their relationship with patient demographic characteristics and multidrug-resistance development. METHODS: 191 Mycobacterium tuberculosis isolates obtained from a 2017/2018 Tanzanian drug resistance survey were sequenced on the Illumina Miseq platform at Supranational Tuberculosis Reference Laboratory in Uganda. Obtained fast-q files were imported into tools for resistance profiling and lineage inference (Kvarq v0.12.2, Mykrobe v0.8.1 and TBprofiler v3.0.5). Additionally for phylogenetic tree construction, RaxML-NG v1.0.3(25) was used to generate a maximum likelihood phylogeny with 800 bootstrap replicates. The resulting trees were plotted, annotated and visualized using ggtree v2.0.4 RESULTS: Most [172(90.0%)] of the isolates were from newly treated Pulmonary TB patients. Coinfection with HIV was observed in 33(17.3%) TB patients. Of the 191 isolates, 22(11.5%) were resistant to one or more commonly used first line anti-TB drugs (FLD), 9(4.7%) isolates were MDR-TB while 3(1.6%) were resistant to all the drugs. Of the 24 isolates with any resistance conferring mutations, 13(54.2%) and 10(41.6%) had mutations in genes associated with resistance to INH and RIF respectively. The findings also show four major lineages i.e. Lineage 3[81 (42.4%)], followed by Lineage 4 [74 (38.7%)], the Lineage 1 [23 (12.0%)] and Lineages 2 [13 (6.8%)] circulaing in Tanzania. CONCLUSION: The findings in this study show that Lineage 3 is the most prevalent lineage in Tanzania whereas drug resistant mutations were more frequent among isolates that belonged to Lineage 4.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Demografía , Farmacorresistencia Bacteriana Múltiple/genética , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Filogenia , Tanzanía/epidemiología , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
4.
BMC Pulm Med ; 19(1): 124, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291943

RESUMEN

BACKGROUND: Pulmonary tuberculosis is a leading cause of morbidity and mortality in developing countries. Drug resistance, a huge problem in this contagious disease, is driven by point mutations in the Mycobacterium tuberculosis genome however, their frequencies vary geographically and this affects applicability of molecular diagnostics for rapid detection of resistance. Here, we report the frequency and patterns of mutations associated with resistance to second-line anti-TB drugs in multidrug-resistant (MDR) M. tuberculosis isolates from eSwatini, Somalia and Uganda that were resistant to a second-line anti-TB drug. METHODS: The quinolone resistance determining region (QRDR) of gyrA/gyrB genes and the drug resistance associated fragment of rrs gene from 80 isolates were sequenced and investigated for presence of drug resistance mutations. Of the 80 isolates, 40 were MDR, of which 28 (70%) were resistant to a second-line anti-TB injectable drug, 18 (45%) were levofloxacin resistant while 12 (30%) were extensively drug resistant (XDR). The remaining 40 isolates were susceptible to anti-TB drugs. MIRU-VNTR analysis was performed for M/XDR isolates. RESULTS: We successfully sub-cultured 38 of the 40 M/XDR isolates. The gyrA resistance mutations (Gly88Ala/Cys/Ala, Ala90Val, Ser91Pro, Asp94Gly/Asn) and gyrB resistance mutations (Asp500His, Asn538Asp) were detected in 72.2% (13/18) and 22.2% (4/18) of the MDR and levofloxacin resistant isolates, respectively. Overall, drug resistance mutations in gyrA/gyrB QRDRs occurred in 77.8% (14/18) of the MDR and levofloxacin resistant isolates. Furthermore, drug resistance mutations a1401g and g1484 t in rrs occurred in 64.3% (18/28) of the MDR isolates resistant to a second-line anti-TB injectable drug. Drug resistance mutations were not detected in drug susceptible isolates. CONCLUSIONS: The frequency of resistance mutations to second-line anti-TB drugs in MDR-TB isolates resistant to second line anti-TB drugs from eSwatini, Somalia and Uganda is high, implying that rapid molecular tests are useful in detecting second-line anti-TB drug resistance in those countries. Relatedly, the frequency of fluoroquinolone resistance mutations in gyrB/QRDR is high relative to global estimates, and they occurred independently of gyrA/QRDR mutations implying that their absence in panels of molecular tests for detecting fluoroquinolone resistance may yield false negative results in our setting.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Mutación , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Amicacina/uso terapéutico , Antituberculosos/uso terapéutico , Capreomicina/uso terapéutico , Estudios Transversales , Esuatini/epidemiología , Fluoroquinolonas/uso terapéutico , Frecuencia de los Genes , Humanos , Kanamicina/uso terapéutico , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/aislamiento & purificación , Análisis de Secuencia de ADN , Somalia/epidemiología , Tuberculosis Pulmonar/tratamiento farmacológico , Uganda/epidemiología
5.
BMC Infect Dis ; 16: 173, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27097724

RESUMEN

BACKGROUND: Mycobacterium tuberculosis Uganda family is the predominant cause of tuberculosis in Uganda. Reasons for this are not clear but are likely to be due to the rampant person-to-person transmission or delayed susceptibility of the organism to drugs during treatment, which may lead to continuous shedding of infectious bacilli, among others. The objective of this study was to determine in vitro, the susceptibility patterns of M. tuberculosis Uganda family compared with Beijing and Delhi/CAS, other M. tuberculosis sub-lineages that also circulate in Uganda but are not as prevalent. The comparisons were made after 10 days of exposure of the strains to Rifampicin and Isoniazid, the most important first-line anti-tuberculosis drugs. METHODS: Minimum inhibitory concentrations (MICs) for three Isoniazid- and Rifampicin-susceptible M. tuberculosis strains (Uganda II, Beijing and Delhi/CAS families) were determined by micro-dilution plate assay. Killing curves for each strain were deduced from colony forming units after exposure to Isoniazid and Rifampicin on days 0, 2, 4, 6, 8, and 10 under aerobic and oxygen-depleted conditions. Data were analyzed with GraphPad Prism 5 software. RESULTS: The MIC for Isoniazid was 0.05 µg/ml for M. tuberculosis Uganda II, and 0.03 µg/ml for M. tuberculosis Beijing and Delhi/CAS. Rifampicin MIC was 1 µg/ml for M. tuberculosis Uganda II, and 0.12 µg/ml for Beijing and Delhi/CAS. At low Rifampicin (0.03-2.5 µg/ml) and Isoniazid (0.12-5 µg/ml) concentrations under aerobic conditions, there was no significant difference in susceptibility patterns between M. tuberculosis Uganda II and Beijing or Delhi/CAS. However, at high Rifampicin (5 µg/ml) and Isoniazid (1.25 µg/ml) concentrations under oxygen-depleted conditions, M. tuberculosis Uganda II was more susceptible to the drugs compared with Beijing or Delhi/CAS families. CONCLUSION: The predominance of M. tuberculosis Uganda II family as the main causative agent of tuberculosis in Uganda is not attributed to its susceptibility behavior to Isoniazid and Rifampicin. Probably, its predominance is due to differences in the immune defenses in the general population against the strains, given that Beijing and Delhi/CAS families may have been introduced more recently. Further research beyond susceptibility to anti-tuberculosis drugs is required to fully explore tuberculosis strain predominance in Uganda.


Asunto(s)
Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Rifampin/farmacología , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/genética , Oxígeno/metabolismo , Tuberculosis/diagnóstico , Tuberculosis/microbiología
6.
BMC Public Health ; 15: 291, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25880829

RESUMEN

BACKGROUND: Prevalence of multidrug resistant tuberculosis (MDR-TB), defined as in vitro resistance to both rifampicin and isoniazid with or without resistance to other TB drugs, in sub-Saharan Africa (SSA) is reportedly low compared to other regions. These estimates are based on data reported to the World Health Organization (WHO) on drug resistance surveys, which may suffer from a reporting bias. We set out to evaluate the variation in prevalence of drug resistant tuberculosis (DR-TB) and its determinants across SSA countries among new and previously treated TB patients. METHODS: The aim was to perform a systematic review and meta-analysis of DR-TB prevalence and associated risk factors in SSA. PubMed, EMBASE, Cochrane and bibliographies of DR-TB studies were searched. Surveys at national or sub-national level, with reported DR-TB prevalence (or sufficient data to calculate a prevalence) to isoniazid (INH), rifampicin (RMP), ethambutol (EMB), and streptomycin (SM) conducted in SSA excluding the Republic of South Africa, published between 2003 and 2013 with no language restriction were considered. Two authors searched and reviewed the studies for eligibility and extracted the data in pre-defined forms. Forest plots of all prevalence estimates by resistance outcome were performed. Summary estimates were calculated using random effects models, when appropriate. Associations between any DR-TB and MDR-TB with potential risk factors were examined through subgroup analyses stratified by new and previously treated patients. RESULTS: A total of 726 studies were identified, of which 27 articles fulfilled the inclusion criteria. Studies reported drug susceptibility testing (DST) results for a total of 13,465 new and 1,776 previously treated TB patients. Pooled estimate of any DR-TB prevalence among the new cases was 12.6% (95% CI 10.6-15.0) while for MDR-TB this was 1.5% (95% CI 1.0-2.3). Among previously treated patients, these were 27.2% (95% CI 21.4-33.8) and 10.3% (95% CI 5.8-17.4%), respectively. DR-TB (any and MDR-TB) did not vary significantly with respect to study characteristics. CONCLUSIONS: The reported prevalence of DR-TB in SSA is low compared to WHO estimates. MDR-TB in this region does not seem to be driven by the high HIV prevalence rates.


Asunto(s)
Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , África del Sur del Sahara/epidemiología , Antituberculosos/uso terapéutico , Técnicas Bacteriológicas , Etambutol/uso terapéutico , Humanos , Isoniazida/uso terapéutico , Prevalencia , Rifampin/uso terapéutico , Factores de Riesgo , Estreptomicina/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Organización Mundial de la Salud
7.
BMC Infect Dis ; 14: 703, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25523472

RESUMEN

BACKGROUND: The global increase in the burden of multidrug-resistant tuberculosis (MDR-TB) underscores an urgent need for data on factors involved in generation and spread of TB drug resistance. We performed molecular analyses on a representative sample of Mycobacterium tuberculosis (MTB) isolates. Basing on findings of the molecular epidemiological study in Kampala, we hypothesized that the predominant MTB strain lineage in Uganda is negatively associated with anti-TB drug resistance and we set out to test this hypothesis. METHODS: We extracted DNA from mycobacterial isolates collected from smear-positive TB patients in the national TB drug resistance survey and carried out IS6110-PCR. To identify MTB lineages/sub lineages RT-PCR SNP was performed using specific primers and hybridization probes and the 'melting curve' analysis was done to distinguish the Uganda II family from other MTB families. The primary outcome was the distribution of the Uganda II family and its associations with anti-TB drug resistance and HIV infection. RESULTS: Out of the 1537 patients enrolled, MTB isolates for 1001 patients were available for SNP analysis for identification of Uganda II family, of which 973 (97%) had conclusive RT-PCR results. Of these 422 (43.4%) were of the Uganda II family, mostly distributed in the south west zone (55.0%; OR = 4.6 for comparison with other zones; 95% CI 2.83-7.57; p < 0.001) but occurred in each of the other seven geographic zones at varying levels. Compared to the Uganda II family, other genotypes as a group were more likely to be resistant to any anti-TB drug (OR(adj) =2.9; 95% CI 1.63-5.06; p = 0.001) or MDR (OR(adj) 4.9; 95% CI, 1.15-20.60; p = 0.032), even after adjusting for geographic zone, patient category, sex, residence and HIV status. It was commonest in the 25-34 year age group 159/330 (48.2%). No association was observed between Uganda II family and HIV infection. CONCLUSION: The Uganda II family is a major cause of morbidity due to TB in all NTLP zones in Uganda. It is less likely to be resistant to anti-TB drugs than other MTB strain lineages.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por VIH/epidemiología , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Adolescente , Adulto , Antituberculosos/farmacología , Coinfección , Femenino , Genotipo , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Epidemiología Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Polimorfismo de Nucleótido Simple , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Uganda/epidemiología , Adulto Joven
8.
PLoS One ; 18(8): e0284545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37590288

RESUMEN

BACKGROUND: Drug-Resistant Tuberculosis (DR-TB) is one of the major challenges to TB control. DESIGN AND METHODS: This was a blinded, laboratory-based cross-sectional study using sputum samples or culture isolates. Samples were from patients with rifampicin-resistant-TB and/or with high risk for isoniazid (INH) resistance and/or 2nd line fluoroquinolones (FQ) and injectable agents (IAs). The diagnostic accuracy of the Xpert® MTB/XDR test was compared to MGIT960 and the Hain Genotype® MTBDRplus and MDRsl assays (LPA) as reference DST methods. Factors for laboratory uptake of the Xpert® MTB/XDR test were also evaluated. RESULTS: Of the 100 stored sputum samples included in this study, 65/99 (65.6%) were resistant to INH, 5/100 (5.0%) were resistant to FQ and none were resistant to IAs using MGIT960. The sensitivity and specificity, n (%; 95% Confidence Interval, CI) of Xpert® MTB/XDR test for; INH was 58 (89.2; 79.1-95.5) and 30 (88.2; 72.5-96.6) and for FQ; 4 (80.0; 28.3-99.4) and 95 (100; 96.2-100), respectively. Using LPA as a reference standard, a total of 52/98 (53.1%) were resistant to INH, 3/100 (3.0%) to FQ, and none to IA. The sensitivity and specificity, n (%; 95%CI) of Xpert® MTB/XDR test compared to LPA for; INH was 50 (96.1; 86.7-99.5) and 34 (74.0; 58.8-85.7) for FQ 3 (100; 29.2-100) and 96 (99.0; 94.3-99.9) respectively. The factors for laboratory uptake and roll-out of the Xpert® MTB/XDR test included: no training needed for technicians with, and one day for those without, previous Xpert-ultra experience, recording and reporting needs were not different from those of Xpert-ultra, the error rate was 4/100 (4%), one (1%) indeterminate rate and test turn-around-time were 1hr/45 minutes. CONCLUSION: There is high sensitivity and specificity of Xpert® MTB/XDR test for isoniazid and fluoroquinolones. There are acceptable Xpert® MTB/XDR test attributes for the test uptake and roll-out.


Asunto(s)
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Uganda , Estudios Transversales , Isoniazida/farmacología , Fluoroquinolonas/farmacología
9.
PLoS One ; 18(3): e0282650, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36897841

RESUMEN

BACKGROUND: Proficiency testing (PT) has been hard to set up due to cost limitations and technical capacity. Conventional Xpert MTB/RIF PT programs use liquid and culture spots which require stringent storage and transportation conditions with cross-contamination chances prevalent. These setbacks prompted the use of dried tube specimens (DTS) for Ultra assay PT. For continuity of PT provision, stability of DTS and compatibility with testing protocols when kept for a long period needs to be established. METHODS: DTS were prepared from known isolates inactivated using a hot air oven at 85°C. 100µl of bacterial suspensions were aliquoted and dried inside a Biosafety cabinet. Panel validation was done to establish the baseline Deoxyribonucleic acid (DNA) concentration in terms of cycle threshold (Ct) value. DTS aliquots were shipped to participants to test and report within six weeks. The remaining DTS were kept at 2-8°C and room temperature for one year with testing at six months. Twenty (20) DTS samples per set remaining at one year were heated at 55°C for two weeks before testing. The means of the different samples were compared to validation data using paired t-tests. Boxplots were designed to visualize the differences in the medians of the DTS. RESULTS: Overall mean Ct value increased by 4.4 from the validation to testing after one year at the different storage conditions. Samples heated at 55°C showed a 6.4 Ct difference from validation data. Testing done at six months on 2-8°C stored items showed no statistical difference. At all the remaining testing times and conditions, P-values were less than 0.008 although the absolute mean Ct when compared showed slight increments and accommodated differences for the detection of MTB and rifampicin resistance. Median values for samples stored at 2-8°C were lower compared to those at room temperature. CONCLUSION: DTS stored at 2-8°C remain more stable for one year compared to higher temperatures and can be consistently used as PT materials in more than one PT round for biannual PT providers.


Asunto(s)
Mycobacterium tuberculosis , Configuración de Recursos Limitados , Humanos , Uganda , Ensayos de Aptitud de Laboratorios/métodos , Rifampin , Sensibilidad y Especificidad
10.
medRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066316

RESUMEN

Background: Drug-Resistant Tuberculosis (DR-TB) is one of the key challenges toward TB control. There is an urgent need for rapid and accurate drug susceptibility tests (DST) for the most commonly used 1 st and 2 nd line TB drugs. Design and Methods: In a blinded, laboratory-based cross-sectional study, we set out to validate the performance of the Xpert ® MTB/XDR test for DST of M. tuberculosis . Sputum samples or culture isolates collected between January 2020 and December 2021 from patients with rifampicin resistance -TB and/or with higher suspicion index for isoniazid (INH) resistance and/or 2 nd line fluoroquinolones (FQ) and injectable agents (IAs) were tested using the Xpert ® MTB/XDR test from 11/September 2021 to 26/May /2022. Diagnostic accuracy and factors for laboratory uptake of Xpert ® MTB/XDR test were compared to MGIT960 and the Hain Genotype® MTBDR plus and MDRsl assays (LPA) as reference DST methods. Results: A total of 100 stored sputum samples were included in this study. Of the samples tested using MGIT960, 65/99 (65.6%) were resistant to INH, 5/100 (5.0%) resistant to FQ and none were resistant to IAs. The sensitivity and specificity, n (%; 95%Confidence Interval, CI) of Xpert ® MTB/XDR test for; INH were 58 (89.2; 79.1-95.5) and 30 (88.2; 72.5-96.6), FQ; 4 (80.0; 28.3-99.4) and 95 (100; 96.2-100), respectively. The specificity for AIs was 100 (100; 96.3-100). Using LPA as a reference standard, a total of 52/98 (53.1%) were resistant to INH, 3/100 (3.0%) to FQ, and none to IA. The sensitivity and specificity, n (%; 95%CI) of Xpert ® MTB/XDR test compared to LPA for; INH was 50 (96.1; 86.7-99.5) and 34 (74.0; 58.8-85.7) and FQ 3 (100; 29.2-100) and 96 (99.0; 94.3-99.9) respectively. The specificity of IAs was 96 (100; 96.2-100). The factors for laboratory uptake and roll-out included; no training needed for technicians with previous Xpert-ultra experience and one day for those without, recording and reporting needs were not different from those of Xpert ultra, the error rate was 4/100 (4%), no uninterpretable results reported, test turn-around-time was 1hr/45 minutes and workflow similar to that of the Xpert-ultra test. Conclusion: There is high sensitivity and specificity of Xpert ® MTB/XDR test for isoniazid, fluoroquinolones, and Injectable agents. There are acceptable Xpert ® MTB/XDR test attributes for test uptake and roll-out.

11.
Antimicrob Resist Infect Control ; 11(1): 68, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550202

RESUMEN

BACKGROUND: Uganda remains one of the countries with the highest burden of TB/HIV. Drug-resistant TB remains a substantial challenge to TB control globally and requires new strategic effective control approaches. Drug resistance usually develops due to inadequate management of TB patients including improper treatment regimens and failure to complete the treatment course which may be due to an unstable supply or a lack of access to treatment, as well as patient noncompliance. METHODS: Two sputa samples were collected from Xpert MTB/RIF® assay-diagnosed multi-drug resistant tuberculosis (MDR-TB) patient at Lira regional referral hospital in northern Uganda between 2020 and 2021 for comprehensive routine mycobacterial species identification and drug susceptibility testing using culture-based methods. Detection of drug resistance-conferring genes was subsequently performed using whole-genome sequencing with Illumina MiSeq platform at the TB Supranational Reference Laboratory in Uganda. RESULTS: In both isolates, extensively drug-resistant TB (XDR-TB) was identified including resistance to Isoniazid (katG p.Ser315Thr), Rifampicin (rpoB p.Ser450Leu), Moxifloxacin (gyrA p.Asp94Gly), Bedaquiline (Rv0678 Glu49fs), Clofazimine (Rv0678 Glu49fs), Linezolid (rplC Cys154Arg), and Ethionamide (ethA c.477del). Further analysis of these two high quality genomes revealed that this 32 years-old patient was infected with the Latin American Mediterranean TB strain (LAM). CONCLUSIONS: This is the first identification of extensively drug-resistant Mycobacterium tuberculosis clinical isolates with bedaquiline, linezolid and clofazimine resistance from Uganda. These acquired resistances were because of non-adherence as seen in the patient's clinical history. Our study also strongly highlights the importance of combating DR-TB in Africa through implementing next generation sequencing that can test resistance to all drugs while providing a faster turnaround time. This can facilitate timely clinical decisions in managing MDR-TB patients with non-adherence or lost to follow-up.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Adulto , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Clofazimina/farmacología , Clofazimina/uso terapéutico , Diarilquinolinas , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Humanos , Linezolid/farmacología , Linezolid/uso terapéutico , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Rifampin/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Uganda
12.
PLoS One ; 16(5): e0251691, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33989348

RESUMEN

BACKGROUND: Following the WHO's endorsement of GeneXpert MTB/RIF assay for tuberculosis diagnosis in 2010, Uganda's ministry of health introduced the assay in its laboratory network in 2012. However, assessing the quality of the result produced from this technique is one of its major implementation challenges. To bridge this gap, the National tuberculosis reference laboratory (NTRL) introduced the GeneXpert MTB/RIF proficiency testing (PT) Scheme in 2015. METHODS: A descriptive cross-sectional study on the GeneXpert PT scheme in Uganda was conducted between 2015 and 2018. Sets of panels each comprising four 1ml cryovial liquid samples were sent out to enrolled participants at preset testing periods. The laboratories' testing accuracies were assessed by comparing their reported results to the expected and participants' consensus results. Percentage scores were assigned and feedback reports were sent back to laboratories. Follow up of sites with unsatisfactory results was done through "on and off-site support". Concurrently, standardization of standard operating procedures (SOPs) and practices to the requirements of the International Organization for Standardization (ISO) 17043:2010 was pursued. RESULTS: Participants gradually increased during the program from 56 in the pilot study to 148 in Round 4 (2018). Continual participation of a particular laboratory yielded an odd of 2.5 [95% confidence interval (CI), 1.22 to 4.34] times greater for achieving a score of above 80% with each new round it participated. The "on and off-site" support supervision documented improved performance of failing laboratories. Records of GeneXpert MTB/RIF PT were used to achieve accreditation to ISO 17043:2010 in 2018. CONCLUSION: Continued participation in GeneXpert MTB/RIF PT improves testing accuracy of laboratories. Effective implementation of this scheme requires competent human resources, facility and equipment, functional quality management system, and adherence to ISO 17043:2010.


Asunto(s)
Laboratorios , Ensayos de Aptitud de Laboratorios , Mycobacterium tuberculosis/genética , Tuberculosis/diagnóstico , Tuberculosis/genética , Estudios Transversales , Femenino , Humanos , Masculino , Proyectos Piloto , Uganda
13.
PLoS One ; 13(5): e0198091, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29847567

RESUMEN

BACKGROUND: Accurate diagnosis of tuberculosis, especially by using rapid molecular assays, can reduce transmission of drug resistant tuberculosis in communities. However, the frequency of resistance conferring mutations varies with geographic location of Mycobacterium tuberculosis, and this affects the efficiency of rapid molecular assays in detecting resistance. This has created need for characterizing drug resistant isolates from different settings to investigate frequencies of resistance conferring mutations. Here, we describe the prevalence and patterns of rifampicin- and isoniazid- resistance conferring mutations in isolates from Uganda, which could be useful in the management of MDR-TB patients in Uganda and other countries in sub-Saharan Africa. RESULTS: Ninety seven M. tuberculosis isolates were characterized, of which 38 were MDR, seven rifampicin-resistant, 12 isoniazid-mono-resistant, and 40 susceptible to rifampicin and isoniazid. Sequence analysis of the rpoB rifampicin-resistance determining region (rpoB/RRDR) revealed mutations in six codons: 588, 531, 526, 516, 513, and 511, of which Ser531Leu was the most frequent (40%, 18/45). Overall, the three mutations (Ser531Leu, His526Tyr, Asp516Tyr) frequently associated with rifampicin-resistance occurred in 76% of the rifampicin resistant isolates while 18% (8/45) of the rifampicin-resistant isolates lacked mutations in rpoB/RRDR. Furthermore, sequence analysis of katG and inhA gene promoter revealed mainly the Ser315Thr (76%, 38/50) and C(-15)T (8%, 4/50) mutations, respectively. These two mutations combined, which are frequently associated with isoniazid-resistance, occurred in 88% of the isoniazid resistant isolates. However, 20% (10/50) of the isoniazid-resistant isolates lacked mutations both in katG and inhA gene promoter. The sensitivity of sequence analysis of rpoB/RRDR for rifampicin-resistance via detection of high confidence mutations (Ser531Leu, His526Tyr, Asp516Tyr) was 81%, while it was 77% for analysis of katG and inhA gene promoter to detect isoniazid-resistance via detection of high confidence mutations (Ser315Thr, C(-15)T, T(-8)C). Furthermore, considering the circulating TB genotypes in Uganda, the isoniazid-resistance conferring mutations were more frequent in M. tuberculosis lineage 4/sub-lineage Uganda, perhaps explaining why this genotype is weakly associated with MDR-TB. CONCLUSION: Sequence analysis of rpoB/RRDR, katG and inhA gene promoter is useful in detecting rifampicin/isoniazid resistant M. tuberculosis isolates in Uganda however, about ≤20% of the resistant isolates lack known resistance-conferring mutations hence rapid molecular assays may not detect them as resistant.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/genética , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Rifampin/farmacología , Genotipo , Prevalencia , Uganda
14.
Infect Genet Evol ; 40: 8-16, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26917365

RESUMEN

Understanding the circulating Mycobacterium tuberculosis resistance mutations is vital for better TB control strategies, especially to inform a new MDR-TB treatment programme. We complemented the phenotypic drug susceptibility testing (DST) based drug resistance surveys (DRSs) conducted in Uganda between 2008 and 2011 with Whole Genome Sequencing (WGS) of 90 Mycobacterium tuberculosis isolates phenotypically resistant to rifampicin and/or isoniazid to better understand the extent of drug resistance. A total of 31 (34.4 %) patients had MDR-TB, 5 (5.6 %) mono-rifampicin resistance and 54 (60.0 %) mono-isoniazid resistance by phenotypic DST. Pyrazinamide resistance mutations were identified in 32.3% of the MDR-TB patients. Resistance to injectable agents was detected in 4/90 (4.4%), and none to fluoroquinolones or novel drugs. Compensatory mutations in rpoC were identified in two patients. The sensitivity and specificity of drug resistance mutations compared to phenotypic DST were for rpoB 88.6% and 98.1%, katG 60.0% and 100%, fabG1 16.5% and 100%, katG and/or fabG1 71.8% and 100%, embCAB 63.0% and 82.5%, rrs 11.4% and 100%, rpsL 20.5% and 95.7% and rrs and/or rpsL 31.8% and 95.7%. Phylogenetic analysis showed dispersed MDR-TB isolate, with only one cluster of three Beijing family from South West Uganda. Among tuberculosis patients in Uganda, resistance beyond first-line drugs as well as compensatory mutations remain low, and MDR-TB isolates did not arise from a dominant clone. Our findings show the potential use of sequencing for complementing DRSs or surveillance in this setting, with good specificity compared to phenotypic DST. The reported high confidence mutations can be included in molecular assays, and population-based studies can track transmission of MDR-TB including the Beijing family strains in the South West of the country.


Asunto(s)
Antituberculosos/farmacología , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Análisis de Secuencia de ADN/métodos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Adulto , Proteínas Bacterianas/genética , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mutación , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Filogenia , Pirazinamida/farmacología , Rifampin/farmacología , Uganda , Adulto Joven
15.
PLoS One ; 8(8): e70763, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936467

RESUMEN

BACKGROUND: Multidrug resistant and extensively drug resistant tuberculosis (TB) have become major threats to control of tuberculosis globally. The rates of anti-TB drug resistance in Uganda are not known. We conducted a national drug resistance survey to investigate the levels and patterns of resistance to first and second line anti-TB drugs among new and previously treated sputum smear-positive TB cases. METHODS: Sputum samples were collected from a nationally representative sample of new and previously treated sputum smear-positive TB patients registered at TB diagnostic centers during December 2009 to February 2011 using a weighted cluster sampling method. Culture and drug susceptibility testing was performed at the national TB reference laboratory. RESULTS: A total of 1537 patients (1397 new and 140 previously treated) were enrolled in the survey from 44 health facilities. HIV test result and complete drug susceptibility testing (DST) results were available for 1524 (96.8%) and 1325 (85.9%) patients, respectively. Of the 1209 isolates from new cases, resistance to any anti-TB drug was 10.3%, 5% were resistant to isoniazid, 1.9% to rifampicin, and 1.4% were multi drug resistant. Among the 116 isolates from previously treated cases, the prevalence of resistance was 25.9%, 23.3%, 12.1% and 12.1% respectively. Of the 1524 patients who had HIV testing 469 (30.7%) tested positive. There was no association between anti-TB drug resistance (including MDR) and HIV infection. CONCLUSION: The prevalence of anti-TB drug resistance among new patients in Uganda is low relative to WHO estimates. The higher levels of MDR-TB (12.1%) and resistance to any drug (25.3%) among previously treated patients raises concerns about the quality of directly observed therapy (DOT) and adherence to treatment. This calls for strengthening existing TB control measures, especially DOT, routine DST among the previously treated TB patients or periodic drug resistance surveys, to prevent and monitor development and transmission of drug resistant TB.


Asunto(s)
Antituberculosos/farmacología , Recolección de Datos , Farmacorresistencia Bacteriana , Esputo/microbiología , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología , Adolescente , Adulto , Antituberculosos/uso terapéutico , Resistencia a Múltiples Medicamentos , Femenino , Infecciones por VIH/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Riesgo , Tuberculosis/complicaciones , Uganda/epidemiología , Organización Mundial de la Salud , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA