Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 216(Pt 3): 114748, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370809

RESUMEN

The functioning of the photosynthetic apparatus in barley (Hordeum vulgare L.) after 7-days of exposure to bulk (b-ZnO) and nanosized ZnO (n-ZnO) (300, 2000, and 10,000 mg/l) has been investigated. An impact on the amount of chlorophylls, photosynthetic efficiency, as well as the zinc accumulation in chloroplasts was demonstrated. Violation of the chloroplast fine structure was revealed. These changes were generally more pronounced with n-ZnO exposure, especially at high concentrations. For instance, the chlorophyll deficiency under 10,000 mg/l b-ZnO treatment was 31% and with exposure to 10,000 mg/l n-ZnO, the chlorophyll deficiency was already 52%. The expression analysis of the photosynthetic genes revealed their different sensitivity to b-ZnO and n-ZnO exposure. The genes encoding subunits of photosystem II (PSII) and, to a slightly lesser extent, photosystem I (PSI) showed the highest suppression of transcriptional levels. The mRNA levels of the subunits of cytochrome-b6f, NADH dehydrogenase, ribulose-1,5-bisphosphate carboxylase and ATP synthase, which, in addition to linear electron flow (LEF), participate in cyclic electron flow (CEF) and autotrophic CO2 fixation, were more stable or increased under b-ZnO and n-ZnO treatments. At the same time, CEF was increased. It was assumed that under the action of b-ZnO and n-ZnO, the processes of LEF are disrupted, and CEF is activated. This allows the plant to prevent photo-oxidation and compensate for the lack of ATP for the CO2 fixation process, thereby ensuring the stability of photosynthetic function in the initial stages of stress factor exposure. The study of photosynthetic structures of crops is important from the point of view of understanding the risks of reducing the production potential and the level of food security due to the growing use of nanoparticles in agriculture.


Asunto(s)
Hordeum , Hordeum/metabolismo , Dióxido de Carbono , Transporte de Electrón , Hojas de la Planta , Clorofila/metabolismo , Adenosina Trifosfato/metabolismo
2.
Chemosphere ; 287(Pt 2): 132167, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34509010

RESUMEN

A comparative analysis of physio-biochemical indices and transcriptional activity of oxidative stress genes in barley (Hordeum vulgare L.) seedlings after 7-days exposure to bulk- and nano-ZnO (300 and 2000 mg/L) was carried out. A dose-dependent reduction in the length and weight of roots and shoots, as well as a significant accumulation of Zn in plant parts, was shown. Alterations in the shape and size of organelles, cytoplasmic vacuolization, and chloroplast and mitochondrial disorganization were also revealed. These processes are particularly pronounced when H. vulgare is exposed to the higher concentrations of nano-ZnO. The study of the antioxidant defense system revealed mainly an increase in the level of reduced glutathione and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST). The increases in activity, by 4-fold and 3-fold, was found for glutathione transferase in the roots when exposed to 2000 mg/L bulk- and nano-ZnO, respectively. The study of transcriptional activity demonstrated that in the roots under the influence of bulk- and nano-ZnO, along with Mn-SOD, Fe-SOD is highly expressed, mainly associated with the protection of chloroplasts. Analysis of the Cat 1 and Cat 2 gene expression showed that the main contribution to the increase in catalase activity in treated H. vulgare is made by the CAT-1 isozyme. Generally, in response to the impact of the studied ZnO forms, the antioxidant defense system is activated in H. vulgare, which effectively prevents the progression of oxidative stress in early stages of plant ontogenesis. Nevertheless, with constant exposure to bulk- and nano-ZnO at high concentrations, such activation leads to a depletion of the plant's energy resources, which negatively affects its growth and development. The results obtained could be useful in predicting the risks associated with the further transfer of nano-ZnO to the environment.


Asunto(s)
Hordeum , Óxido de Zinc , Antioxidantes , Catalasa/genética , Catalasa/metabolismo , Hordeum/genética , Hordeum/metabolismo , Estrés Oxidativo , Óxido de Zinc/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA