Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33790008

RESUMEN

A radiative vapor condenser sheds heat in the form of infrared radiation and cools itself to below the ambient air temperature to produce liquid water from vapor. This effect has been known for centuries, and is exploited by some insects to survive in dry deserts. Humans have also been using radiative condensation for dew collection. However, all existing radiative vapor condensers must operate during the nighttime. Here, we develop daytime radiative condensers that continue to operate 24 h a day. These daytime radiative condensers can produce water from vapor under direct sunlight, without active consumption of energy. Combined with traditional passive cooling via convection and conduction, radiative cooling can substantially increase the performance of passive vapor condensation, which can be used for passive water extraction and purification technologies.

2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33833057

RESUMEN

Structural characterization of biologically formed materials is essential for understanding biological phenomena and their enviro-nment, and for generating new bio-inspired engineering concepts. For example, nacre-the inner lining of some mollusk shells-encodes local environmental conditions throughout its formation and has exceptional strength due to its nanoscale brick-and-mortar structure. This layered structure, comprising alternating transparent aragonite (CaCO3) tablets and thinner organic polymer layers, also results in stunning interference colors. Existing methods of structural characterization of nacre rely on some form of cross-sectional analysis, such as scanning or transmission electron microscopy or polarization-dependent imaging contrast (PIC) mapping. However, these techniques are destructive and too time- and resource-intensive to analyze large sample areas. Here, we present an all-optical, rapid, and nondestructive imaging technique-hyperspectral interference tomography (HIT)-to spatially map the structural parameters of nacre and other disordered layered materials. We combined hyperspectral imaging with optical-interference modeling to infer the mean tablet thickness and its disorder in nacre across entire mollusk shells from red and rainbow abalone (Haliotis rufescens and Haliotis iris) at various stages of development. We observed that in red abalone, unexpectedly, nacre tablet thickness decreases with age of the mollusk, despite roughly similar appearance of nacre at all ages and positions in the shell. Our rapid, inexpensive, and nondestructive method can be readily applied to in-field studies.


Asunto(s)
Exoesqueleto/química , Gastrópodos/metabolismo , Nácar/análisis , Imagen Óptica/métodos , Exoesqueleto/metabolismo , Animales , Gastrópodos/citología , Imagen Óptica/instrumentación , Imagen Óptica/normas , Sensibilidad y Especificidad
3.
Nano Lett ; 23(15): 6852-6858, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499230

RESUMEN

Laser sails propelled by gigawatt-scale ground-based laser arrays have the potential to reach relativistic speeds, traversing the solar system in hours and reaching nearby stars in years. Here, we describe the danger interplanetary dust poses to the survival of a laser sail during its acceleration phase. We show through multiphysics simulations how localized heating from a single optically absorbing dust particle on the sail can initiate a thermal runaway process that rapidly spreads and destroys the entire sail. We explore potential mitigation strategies, including increasing the in-plane thermal conductivity of the sail to reduce the peak temperature at hot spots and isolating the absorptive regions of the sail that can burn away individually.

4.
Nano Lett ; 22(1): 6-13, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34958595

RESUMEN

An induced-transmission filter (ITF) uses an ultrathin metallic layer positioned at an electric-field node within a dielectric thin-film bandpass filter to select one transmission band while suppressing other bands that would have been present without the metal layer. We introduce a switchable mid-infrared ITF where the metal can be "switched on and off", enabling the modulation of the filter response from a single band to multiband. The switching is enabled by the reversible insulator-to-metal phase transition of a subwavelength film of vanadium dioxide (VO2). Our work generalizes the ITF─a niche type of bandpass filter─into a new class of tunable devices. Furthermore, our fabrication process─which begins with thin-film VO2 on a suspended membrane─enables the integration of VO2 into any thin-film assembly that is compatible with physical vapor deposition processes and is thus a new platform for realizing tunable thin-film filters.

5.
Opt Express ; 30(21): 38458-38467, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258410

RESUMEN

We found that temperature-dependent infrared spectroscopy measurements (i.e., reflectance or transmittance) using a Fourier-transform spectrometer can have substantial errors, especially for elevated sample temperatures and collection using an objective lens. These errors can arise as a result of partial detector saturation due to thermal emission from the measured sample reaching the detector, resulting in nonphysical apparent reduction of reflectance or transmittance with increasing sample temperature. Here, we demonstrate that these temperature-dependent errors can be corrected by implementing several levels of optical attenuation that enable convergence testing of the measured reflectance or transmittance as the thermal-emission signal is reduced, or by applying correction factors that can be inferred by looking at the spectral regions where the sample is not expected to have a substantial temperature dependence.

6.
Proc Natl Acad Sci U S A ; 116(52): 26402-26406, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31848248

RESUMEN

Thermal emission is the process by which all objects at nonzero temperatures emit light and is well described by the Planck, Kirchhoff, and Stefan-Boltzmann laws. For most solids, the thermally emitted power increases monotonically with temperature in a one-to-one relationship that enables applications such as infrared imaging and noncontact thermometry. Here, we demonstrated ultrathin thermal emitters that violate this one-to-one relationship via the use of samarium nickel oxide (SmNiO3), a strongly correlated quantum material that undergoes a fully reversible, temperature-driven solid-state phase transition. The smooth and hysteresis-free nature of this unique insulator-to-metal phase transition enabled us to engineer the temperature dependence of emissivity to precisely cancel out the intrinsic blackbody profile described by the Stefan-Boltzmann law, for both heating and cooling. Our design results in temperature-independent thermally emitted power within the long-wave atmospheric transparency window (wavelengths of 8 to 14 µm), across a broad temperature range of ∼30 °C, centered around ∼120 °C. The ability to decouple temperature and thermal emission opens a gateway for controlling the visibility of objects to infrared cameras and, more broadly, opportunities for quantum materials in controlling heat transfer.

7.
Langmuir ; 37(30): 9222-9231, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34279965

RESUMEN

Functionalization of diamond surfaces with TEMPO and other surface paramagnetic species represents one approach to the implementation of novel chemical detection schemes that make use of shallow quantum color defects such as silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers. Yet, prior approaches to quantum-based chemical sensing have been hampered by the absence of high-quality surface functionalization schemes for linking radicals to diamond surfaces. Here, we demonstrate a highly controlled approach to the functionalization of diamond surfaces with carboxylic acid groups via all-carbon tethers of different lengths, followed by covalent chemistry to yield high-quality, TEMPO-modified surfaces. Our studies yield estimated surface densities of 4-amino-TEMPO of approximately 1.4 molecules nm-2 on nanodiamond (varying with molecular linker length) and 3.3 molecules nm-2 on planar diamond. These values are higher than those reported previously using other functionalization methods. The ζ-potential of nanodiamonds was used to track reaction progress and elucidate the regioselectivity of the reaction between ethenyl and carboxylate groups and surface radicals.

8.
Nano Lett ; 20(12): 8483-8486, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33197190

RESUMEN

We propose a new type of reflective polarizer based on polarization-dependent coupling to surface plasmon polaritons (SPPs) from free space. This inexpensive polarizer is relatively narrowband but features an extinction ratio of up to 1000 with efficiency of up to 95% for the desired polarization (numbers from a calculation) and thus can be stacked to achieve extinction ratios of 106 or more. As a proof of concept, we experimentally realized a polarizer based on nanoporous aluminum oxide that operates around a wavelength of 10.6 µm, corresponding to the output of a CO2 laser, using aluminum anodization, a low-cost electrochemical process.

9.
Nat Mater ; 18(9): 920-930, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31133732

RESUMEN

Thermal emission is a ubiquitous and fundamental process by which all objects at non-zero temperatures radiate electromagnetic energy. This process is often assumed to be incoherent in both space and time, resulting in broadband, omnidirectional light emission toward the far field, with a spectral density related to the emitter temperature by Planck's law. Over the past two decades, there has been considerable progress in engineering the spectrum, directionality, polarization and temporal response of thermally emitted light using nanostructured materials. This Review summarizes the basic physics of thermal emission, lays out various nanophotonic approaches to engineer thermal emission in the far field, and highlights several applications, including energy harvesting, lighting and radiative cooling.

10.
Proc Natl Acad Sci U S A ; 111(6): E639-44, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24469797

RESUMEN

Many experimental systems consist of large ensembles of uncoupled or weakly interacting elements operating as a single whole; this is particularly the case for applications in nano-optics and plasmonics, including colloidal solutions, plasmonic or dielectric nanoparticles on a substrate, antenna arrays, and others. In such experiments, measurements of the optical spectra of ensembles will differ from measurements of the independent elements as a result of small variations from element to element (also known as polydispersity) even if these elements are designed to be identical. In particular, sharp spectral features arising from narrow-band resonances will tend to appear broader and can even be washed out completely. Here, we explore this effect of inhomogeneous broadening as it occurs in colloidal nanopolymers comprising self-assembled nanorod chains in solution. Using a technique combining finite-difference time-domain simulations and Monte Carlo sampling, we predict the inhomogeneously broadened optical spectra of these colloidal nanopolymers and observe significant qualitative differences compared with the unbroadened spectra. The approach combining an electromagnetic simulation technique with Monte Carlo sampling is widely applicable for quantifying the effects of inhomogeneous broadening in a variety of physical systems, including those with many degrees of freedom that are otherwise computationally intractable.

11.
Nano Lett ; 16(12): 7346-7351, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960456

RESUMEN

Carrier dynamics acquire a new character in the presence of Bloch-band Berry curvature, which naturally arises in gapped Dirac materials (GDMs). Here, we argue that photoresponse in GDMs with small band gaps is dramatically enhanced by Berry curvature. This manifests in a giant and saturable Hall photoconductivity when illuminated by circularly polarized light. Unlike Hall motion arising from a Lorentz force in a magnetic field, which impedes longitudinal carrier motion, Hall photoconductivity arising from Berry curvature can boost longitudinal carrier transport. In GDMs, this results in a helicity-dependent photoresponse in the Hall regime, where photoconductivity is dominated by its Hall component. We find that the induced Hall conductivity per incident irradiance is enhanced by up to 6 orders of magnitude when moving from the visible regime (with corresponding band gaps) to the far infrared. These results suggest that narrow-gap GDMs are an ideal test-bed for the unique physics that arise in the presence of Berry curvature and open a new avenue for infrared and terahertz optoelectronics.

12.
Nano Lett ; 16(2): 1050-5, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26690855

RESUMEN

Active, widely tunable optical materials have enabled rapid advances in photonics and optoelectronics, especially in the emerging field of meta-devices. Here, we demonstrate that spatially selective defect engineering on the nanometer scale can transform phase-transition materials into optical metasurfaces. Using ion irradiation through nanometer-scale masks, we selectively defect-engineered the insulator-metal transition of vanadium dioxide, a prototypical correlated phase-transition material whose optical properties change dramatically depending on its state. Using this robust technique, we demonstrated several optical metasurfaces, including tunable absorbers with artificially induced phase coexistence and tunable polarizers based on thermally triggered dichroism. Spatially selective nanoscale defect engineering represents a new paradigm for active photonic structures and devices.

13.
Nano Lett ; 15(6): 3851-8, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25978528

RESUMEN

Phased-antenna metasurfaces can impart abrupt, spatially dependent changes to the amplitude, phase, and polarization of light and thus mold wavefronts in a desired fashion. Here we present an experimental and computational near-field study of metasurfaces based on near-resonant V-shaped antennas and connect their near- and far-field optical responses. We show that far fields can be obtained from limited, experimentally obtained knowledge of the near fields, paving the way for experimental near-field characterization of metasurfaces and other optical nanostructures and prediction of their far fields from the near-field measurements.

14.
Nano Lett ; 15(8): 5358-62, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26168329

RESUMEN

Nanoscale optical resonators enable a new class of flat optical components called metasurfaces. This approach has been used to demonstrate functionalities such as focusing free of monochromatic aberrations (i.e., spherical and coma), anomalous reflection, and large circular dichroism. Recently, dielectric metasurfaces that compensate the phase dispersion responsible for chromatic aberrations have been demonstrated. Here, we utilize an aperiodic array of coupled dielectric nanoresonators to demonstrate a multiwavelength achromatic lens. The focal length remains unchanged for three wavelengths in the near-infrared region (1300, 1550, and 1800 nm). Experimental results are in agreement with full-wave simulations. Our findings are an essential step toward a realization of broadband flat optical elements.

15.
Nano Lett ; 14(11): 6526-32, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25310847

RESUMEN

Dynamically reconfigurable metasurfaces open up unprecedented opportunities in applications such as high capacity communications, dynamic beam shaping, hyperspectral imaging, and adaptive optics. The realization of high performance metasurface-based devices remains a great challenge due to very limited tuning ranges and modulation depths. Here we show that a widely tunable metasurface composed of optical antennas on graphene can be incorporated into a subwavelength-thick optical cavity to create an electrically tunable perfect absorber. By switching the absorber in and out of the critical coupling condition via the gate voltage applied on graphene, a modulation depth of up to 100% can be achieved. In particular, we demonstrated ultrathin (thickness < λ0/10) high speed (up to 20 GHz) optical modulators over a broad wavelength range (5-7 µm). The operating wavelength can be scaled from the near-infrared to the terahertz by simply tailoring the metasurface and cavity dimensions.


Asunto(s)
Electrónica/instrumentación , Grafito/química , Óptica y Fotónica/instrumentación , Electricidad , Diseño de Equipo , Rayos Infrarrojos
16.
Nano Lett ; 14(1): 214-9, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24299012

RESUMEN

Graphene is emerging as a broadband optical material which can be dynamically tuned by electrostatic doping. However, the direct application of graphene sheets in optoelectronic devices is challenging due to graphene's small thickness and the resultant weak interaction with light. By combining metal and graphene in a hybrid plasmonic structure, it is possible to enhance graphene-light interaction and thus achieve in situ control of the optical response. We show that the effective mode index of the bonding plasmonic mode in metal-insulator-metal (MIM) waveguides is particularly sensitive to the change in the optical conductivity of a graphene layer in the gap. By incorporating such MIM structures in optic antenna designs, we demonstrate an electrically tunable coupled antenna array on graphene with a large tuning range (1100 nm, i.e., 250 cm(-1), nearly 20% of the resonance frequency) of the antenna resonance wavelength at the mid-infrared (MIR) region. Our device exhibits a 3 dB cutoff frequency of 30 MHz, which can be further increased into the gigahertz range. This study confirms that hybrid metal-graphene structures are promising elements for high-speed electrically controllable optical and optoelectronic devices.

17.
Nat Mater ; 12(1): 20-4, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23064496

RESUMEN

Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery.

18.
Opt Lett ; 39(3): 517-20, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24487854

RESUMEN

Spoof surface plasmons (SP) are SP-like waves that propagate along metal surfaces with deeply sub-wavelength corrugations and whose dispersive properties are determined primarily by the corrugation dimensions. Two parallel corrugated surfaces separated by a sub-wavelength dielectric gap create a "spoof" analog of the plasmonic metal-insulator-metal waveguides, dubbed a "spoof-insulator-spoof" (SIS) waveguide. Here we study the optical forces generated by the propagating "bonding" and "anti-bonding" waveguide modes of the SIS geometry and the role that surface structuring plays in determining the modal properties. By changing the dimensions of the grooves, strong attractive and repulsive optical forces between the surfaces can be generated at nearly any frequency.

19.
Nano Lett ; 13(9): 4269-74, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23915192

RESUMEN

We report a new type of holographic interface, which is able to manipulate the three fundamental properties of light (phase, amplitude, and polarization) over a broad wavelength range. The design strategy relies on replacing the large openings of conventional holograms by arrays of subwavelength apertures, oriented to locally select a particular state of polarization. The resulting optical element can therefore be viewed as the superposition of two independent structures with very different length scales, that is, a hologram with each of its apertures filled with nanoscale openings to only transmit a desired state of polarization. As an implementation, we fabricated a nanostructured holographic plate that can generate radially polarized optical beams from circularly polarized incident light, and we demonstrated that it can operate over a broad range of wavelengths. The ability of a single holographic interface to simultaneously shape the amplitude, phase, and polarization of light can find widespread applications in photonics.


Asunto(s)
Holografía/métodos , Nanoestructuras/química , Óptica y Fotónica , Luz , Refractometría , Dispersión de Radiación
20.
Nano Lett ; 13(3): 1257-64, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23441688

RESUMEN

Plasmonic antennas enable the conversion of light from free space into subwavelength volumes and vice versa, which facilitates the manipulation of light at the nanoscale. Dynamic control of the properties of antennas is desirable for many applications, including biochemical sensors, reconfigurable meta-surfaces and compact optoelectronic devices. The combination of metallic structures and graphene, which has gate-voltage dependent optical properties, is emerging as a possible platform for electrically controlled plasmonic devices. In this paper, we demonstrate in situ control of antennas using graphene as an electrically tunable load in the nanoscale antenna gap. In our experiments, we demonstrate electrical tuning of graphene-loaded antennas over a broad wavelength range of 650 nm (∼140 cm(-1), ∼10% of the resonance frequency) in the mid-infrared (MIR) region. We propose an equivalent circuit model to quantitatively analyze the tuning behavior of graphene-loaded antenna pairs and derive an analytical expression for the tuning range of resonant wavelength. In a separate experiment, we used doubly resonant antenna arrays to achieve MIR optical intensity modulation with maximum modulation depth of more than 30% and bandwidth of 600 nm (∼100 cm(-1), 8% of the resonance frequency). This study shows that combining graphene with metallic nanostructures provides a route to electrically tunable optical and optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA