Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Transplant ; 14(10): 2328-38, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25154787

RESUMEN

Syndecan-1 is a transmembrane heparan sulfate (HS) proteoglycan present on hepatocytes and involved in uptake of triglyceride-rich lipoproteins via its HS polysaccharide side chains. We hypothesized that altered hepatic syndecan-1 metabolism could be involved in dyslipidemia related to renal transplantation. In a rat renal transplantation model elevated plasma triglycerides were associated with fivefold increased expression of hepatic syndecan-1 mRNA (p < 0.01), but not protein. Expression of syndecan-1 sheddases (ADAM17, MMP9) and heparanase was significantly up-regulated after renal transplantation (all p < 0.05). Profiling of HS side chains revealed loss of hepatic HS upon renal transplantation accompanied by significant decreased functional capacity for VLDL binding (p = 0.02). In a human renal transplantation cohort (n = 510), plasma levels of shed syndecan-1 were measured. Multivariate analysis showed plasma syndecan-1 to be independently associated with triglycerides (p < 0.0001) and inversely with HDL cholesterol (p < 0.0001). Last, we show a physical association of syndecan-1 to HDL from renal transplant recipients (RTRs), but not to HDL from healthy controls. Our data suggest that after renal transplantation loss of hepatic HS together with increased syndecan-1 shedding hampers lipoprotein binding and uptake by the liver contributing to dyslipidemia. Our data open perspectives toward improvement of lipid profiles by targeted inhibition of syndecan-1 catabolism in renal transplantation.


Asunto(s)
Dislipidemias/metabolismo , Trasplante de Riñón , Hígado/metabolismo , Sindecano-1/metabolismo , Animales , Femenino , Masculino , Ratas , Ratas Wistar
2.
Am J Transplant ; 12(6): 1429-40, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22420764

RESUMEN

Smooth muscle cells (SMCs) play a key role in the pathogenesis of occlusive vascular diseases, including transplant vasculopathy. Neointimal SMCs in experimental renal transplant vasculopathy are graft-derived. We propose that neointimal SMCs in renal allografts are derived from the vascular media resulting from a transplantation-induced phenotypic switch. We examined the molecular changes in the medial microenvironment that lead to phenotypic modulation of SMCs in rat renal allograft arteries with neointimal lesions. Dark Agouti donor kidneys were transplanted into Wistar Furth recipients and recovered at day 56. Neointimal and medial layers were isolated using laser microdissection. Gene expression was analyzed using low-density arrays and confirmed by immunostaining. In allografts, neointimal SMCs expressed increased levels of Tgf ß1 and Pdgfb. In medial allograft SMCs, gene expression of Ctgf, Tgf ß1 and Pdgfrb was upregulated. Gene expression of Klf4 was upregulated as well, while expression of Sm22α was downregulated. Finally, PDGF-BB-stimulated phenotypically modulated SMCs, as evidenced by reduced contractile function in vitro which was accompanied by increased Klf4 and Col1α1, and reduced α-Sma and Sm22α expression. In transplant vasculopathy, neointimal PDGF-BB induces phenotypic modulation of medial SMCs, through upregulation of KLF4 in the media to contribute to (further) expansion of the neointima.


Asunto(s)
Trasplante de Riñón , Músculo Liso Vascular/citología , Humanos , Inmunohistoquímica , Factor 4 Similar a Kruppel , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA