Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Bacteriol ; 203(19): e0031521, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34251869

RESUMEN

Bacteria can utilize copper (Cu) as a trace element to support cellular processes; however, excess Cu can intoxicate bacteria. Here, we characterize the cop operon in group B streptococcus (GBS) and establish its role in evasion of Cu intoxication and the response to Cu stress on virulence. Growth of a GBS mutant deficient in the copA Cu exporter was severely compromised under Cu stress conditions. GBS survival of Cu stress reflected a mechanism of CopY derepression of the CopA efflux system. However, neither mutant was attenuated for intracellular survival in macrophages. Analysis of global transcriptional responses to Cu by RNA sequencing (RNA-seq) revealed a stress signature encompassing homeostasis of multiple metals. Genes induced by Cu stress included putative metal transporters for manganese import, whereas a system for iron export was repressed. In addition, copA promoted the ability of GBS to colonize the blood, liver, and spleen of mice following disseminated infection. Together, these findings show that GBS copA mediates resistance to Cu intoxication via regulation by the Cu-sensing transcriptional repressor copY. Cu stress responses in GBS reflect a transcriptional signature that heightens virulence and represents an important part of the bacterium's ability to survive in different environments. IMPORTANCE Understanding how bacteria manage cellular levels of metal ions, such as copper, helps to explain how microbial cells can survive in different stressful environments. We show the opportunistic pathogen group B streptococcus (GBS) achieve homeostasis of intracellular copper through the activities of the genes that comprise the cop operon, and we describe how this helps GBS survive in stressful environments, including in the mammalian host during systemic disseminated infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cobre/farmacología , Regulación Bacteriana de la Expresión Génica/fisiología , Streptococcus agalactiae/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Proteínas Bacterianas/genética , Transporte Biológico , Manganeso , Operón , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Estrés Fisiológico/efectos de los fármacos , Virulencia
2.
FASEB J ; 34(11): 14572-14587, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32901999

RESUMEN

Urinary tract infections (UTI) frequently progress to chronicity in infected individuals but the mechanisms of pathogenesis underlying chronic UTI are not well understood. We examined the role of interleukin (IL)-17A in UTI because this cytokine promotes innate defense against uropathogenic Escherichia coli (UPEC). Analysis of UPEC persistence and pyelonephritis in mice deficient in IL-17A revealed that UPEC CFT073 caused infection at a rate higher than the multidrug resistant strain EC958. Il17a-/- mice exhibited pyelonephritis with kidney bacterial burdens higher than those of wild-type (WT) mice. Synthesis of IL-17A in the bladder reflected a combination of γδ-T and TH 17 cell responses. Analysis of circulating inflammatory mediators at 24h postinoculation identified predictors of progression to chronicity, including IL-6 and monocyte chemoattractant protein-1 (MCP-1). Histological analysis identified infiltrating populations of neutrophils, NK cells, and γδ T cells in the bladder, whereas neutrophils predominated in the kidney. Analysis of the contribution of flagella to chronicity using hyper-flagellated and fliC-deficient UPEC in WT and Il17a-/- mice revealed that, in a host that is deficient for the production of IL-17A, flagella contribute to bacterial persistence. These findings show a role for IL-17A in defense against chronic UTI and a contribution of flagella to the pathogenesis of infection.


Asunto(s)
Flagelos/metabolismo , Inmunidad Innata , Interleucina-17/metabolismo , Subgrupos de Linfocitos T/inmunología , Infecciones Urinarias/inmunología , Escherichia coli Uropatógena/patogenicidad , Animales , Quimiocina CCL2/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Flagelos/genética , Flagelina/genética , Flagelina/metabolismo , Interacciones Huésped-Patógeno , Interleucina-17/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Vejiga Urinaria/citología , Vejiga Urinaria/inmunología , Vejiga Urinaria/microbiología , Infecciones Urinarias/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/fisiología
3.
Sci Rep ; 13(1): 2137, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747074

RESUMEN

Streptococcus agalactiae, also known as Group B Streptococcus (GBS) is a frequent cause of infections, including bacteraemia and other acute diseases in adults and immunocompromised individuals. We developed a novel system to study GBS within human monocytes to define the co-transcriptome of intracellular GBS (iGBS) and host cells simultaneously using dual RNA-sequencing (RNA-seq) to better define how this pathogen responds to host cells. Using human U937 monocytes and genome-sequenced GBS reference strain 874,391 in antibiotic protection assays we validated a system for dual-RNA seq based on measures of GBS and monocyte viability to ensure that the bacterial and host cell co-transcriptome reflected mainly intracellular (iGBS) rather than extracellular GBS. Elucidation of the co-transcriptome revealed 1119 dysregulated transcripts in iGBS with most genes, including several that encode virulence factors (e.g., scpB, hvgA, ribD, pil2b) exhibiting activation by upregulated expression. Infection with iGBS resulted in significant remodelling of the monocyte transcriptome, with 7587 transcripts differentially expressed including 7040 up-regulated and 547 down-regulated. qPCR confirmed that the most strongly activated genes included sht, encoding Streptococcal Histidine Triad Protein. An isogenic GBS mutant strain deficient in sht revealed a significant effect of this gene on phagocytosis of GBS and survival of the bacteria during systemic infection in mice. Identification of a novel contribution of sht to GBS virulence shows the co-transcriptome responses elucidated in GBS-infected monocytes help to shape the host-pathogen interaction and establish a role for sht in the response of the bacteria to phagocytic uptake. This study provides comprehension of concurrent transcriptional responses that occur in GBS and human monocytes that shape the host-pathogen interaction.


Asunto(s)
Monocitos , Infecciones Estreptocócicas , Adulto , Humanos , Ratones , Animales , Monocitos/metabolismo , Streptococcus agalactiae , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/microbiología , RNA-Seq , Fagocitosis/genética , Interacciones Huésped-Patógeno/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
4.
Virulence ; 12(1): 3015-3027, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643172

RESUMEN

Streptococcus agalactiae glyceraldehyde 3-phosphate dehydrogenase (GAPDH), encoded by gapC, is a glycolytic enzyme that is associated with virulence and immune-mediated protection. However, the role of GAPDH in cellular cytokine responses to S. agalactiae, bacterial phagocytosis and colonization of the female reproductive tract, a central host niche, is unknown. We expressed and studied purified recombinant GAPDH (rGAPDH) of S. agalactiae in cytokine elicitation assays with human monocyte-derived macrophage, epithelial cell, and polymorphonuclear leukocyte (PMN) co-culture infection models. We also generated a S. agalactiae mutant that over-expresses GAPDH (oeGAPDH) from gapC using a constitutively active promoter, and analyzed the mutant in murine macrophage antibiotic protection assays and in virulence assays in vivo, using a colonization model that is based on experimental infection of the reproductive tract in female mice. Human cell co-cultures produced interleukin (IL)-1ß, IL-6, macrophage inflammatory protein (MIP)-1, tumor necrosis factor (TNF)-α and IL-10 within 24 h of exposure to rGAPDH. PMNs were required for several of these cytokine responses. However, over-expression of GAPDH in S. agalactiae did not significantly affect measures of phagocytic uptake compared to an empty vector control. In contrast, oeGAPDH-S. agalactiae showed a small but statistically significant attenuation for persistence in the reproductive tract of female mice during the chronic phase of infection (10-28 days post-inoculation), relative to the vector control. We conclude that S. agalactiae GAPDH elicits production of multiple cytokines from human cells, and over-expression of GAPDH renders the bacterium more susceptible to host clearance in the female reproductive tract.One-sentence summary: This study shows Streptococcus agalactiae glyceraldehyde 3-phosphate dehydrogenase, an enzyme that functions in glycolysis, gluconeogenesis and virulence, modifies phagocytosis outcomes, including cytokine synthesis, and affects bacterial persistence in the female reproductive tract.


Asunto(s)
Citocinas , Streptococcus agalactiae , Animales , Femenino , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Factores Inmunológicos , Ratones , Streptococcus agalactiae/genética , Virulencia
5.
mSphere ; 4(6)2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776239

RESUMEN

Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) engages interleukin-10 (IL-10) as an early innate immune response to regulate inflammation and promote the control of bladder infection. However, the mechanism of engagement of innate immunity by UPEC that leads to elicitation of IL-10 in the bladder is unknown. Here, we identify the major UPEC flagellar filament, FliC, as a key bacterial component sensed by the bladder innate immune system responsible for the induction of IL-10 synthesis. IL-10 responses of human as well as mouse bladder epithelial cell-monocyte cocultures were triggered by flagella of three major UPEC representative strains, CFT073, UTI89, and EC958. FliC purified to homogeneity induced IL-10 in vitro and in vivo as well as other functionally related cytokines, including IL-6. The genome-wide innate immunological context of FliC-induced IL-10 in the bladder was defined using RNA sequencing that revealed a network of transcriptional and antibacterial defenses comprising 1,400 genes that were induced by FliC. Of the FliC-responsive bladder transcriptome, altered expression of il10 and 808 additional genes were dependent on Toll-like receptor 5 (TLR5), according to analysis of TLR5-deficient mice. Examination of the potential of FliC and associated innate immune signature in the bladder to boost host defense, based on prophylactic or therapeutic administration to mice, revealed significant benefits for the control of UPEC. We conclude that detection of FliC through TLR5 triggers rapid IL-10 synthesis in the bladder, and FliC represents a potential immune modulator that might offer benefit for the treatment or prevention of UPEC UTI.IMPORTANCE Interleukin-10 is part of the immune response to urinary tract infection (UTI) due to E. coli, and it is important in the early control of infection in the bladder. Defining the mechanism of engagement of the immune system by the bacteria that enables the protective IL-10 response is critical to exploring how we might exploit this mechanism for new infection control strategies. In this study, we reveal part of the bacterial flagellar apparatus (FliC) is an important component that is sensed by and responsible for induction of IL-10 in the response to UPEC. We show this response occurs in a TLR5-dependent manner. Using infection prevention and control trials in mice infected with E. coli, this study also provides evidence that purified FliC might be of value in novel approaches for the treatment of UTI or in preventing infection by exploiting the FliC-triggered bladder transcriptome.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Proteínas de Escherichia coli/inmunología , Flagelina/inmunología , Interleucina-10/metabolismo , Receptor Toll-Like 5/metabolismo , Vejiga Urinaria/inmunología , Escherichia coli Uropatógena/inmunología , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Infecciones por Escherichia coli/microbiología , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Ratones Endogámicos C57BL , Modelos Teóricos , Factores de Tiempo , Vejiga Urinaria/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA