Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(14): 146201, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37862631

RESUMEN

The interplay of the nonequivalent corners in the Brillouin zone of transition metal dichalcogenides (TMDCs) has been investigated extensively. While experimental and theoretical works contributed to a detailed understanding of the relaxation of selective optical excitations and the related relaxation rates, only limited microscopic descriptions of stationary experiments are available so far. Here we present microscopic calculations for the nonequilibrium steady state properties of excitons during continuous wave pumping exemplary for monolayer MoSe_{2}. We find sharp features in photoluminescence excitation spectra and degree of polarization which result from phonon assisted excitonic transitions dominating over exciton recombination and intervalley exchange coupling.

2.
Phys Rev Lett ; 131(3): 036902, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37540866

RESUMEN

We report on the spatial coherence of interlayer exciton ensembles as formed in MoSe_{2}/WSe_{2} heterostructures and characterized by point-inversion Michelson-Morley interferometry. Below 10 K, the measured spatial coherence length of the interlayer excitons reaches values equivalent to the lateral expansion of the exciton ensembles. In this regime, the light emission of the excitons turns out to be homogeneously broadened in energy with a high temporal coherence. At higher temperatures, both the spatial coherence length and the temporal coherence time decrease, most likely because of thermal processes. The presented findings point towards a spatially extended, coherent many-body state of interlayer excitons at low temperature.

3.
Entropy (Basel) ; 22(9)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-33286753

RESUMEN

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.

4.
Nat Commun ; 14(1): 7273, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949848

RESUMEN

Vertical heterostructures of transition metal dichalcogenides (TMDs) host interlayer excitons with electrons and holes residing in different layers. With respect to their intralayer counterparts, interlayer excitons feature longer lifetimes and diffusion lengths, paving the way for room temperature excitonic optoelectronic devices. The interlayer exciton formation process and its underlying physical mechanisms are largely unexplored. Here we use ultrafast transient absorption spectroscopy with a broadband white-light probe to simultaneously resolve interlayer charge transfer and interlayer exciton formation dynamics in a MoSe2/WSe2 heterostructure. We observe an interlayer exciton formation timescale nearly an order of magnitude (~1 ps) longer than the interlayer charge transfer time (~100 fs). Microscopic calculations attribute this relative delay to an interplay of a phonon-assisted interlayer exciton cascade and thermalization, and excitonic wave-function overlap. Our results may explain the efficient photocurrent generation observed in optoelectronic devices based on TMD heterostructures, as the interlayer excitons are able to dissociate during thermalization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA