Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 118: 105479, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801945

RESUMEN

Tacrine is a known Acetylcholinesterase (AChE) inhibitors having hepatotoxicity as main liability associated with it. The present study aims to reduce its hepatotoxicity by synthesizing tacrine linked triazole glycoconjugates via Huisgen's [3 + 2] cycloaddition of anomeric azides and terminal acetylenes derived from tacrine. A series of triazole based glycoconjugates containing both acetylated (A-1 to A-7) and free sugar hydroxyl groups (A-8 to A-14) at the amino position of tacrine were synthesized in good yield taking aid from molecular docking studies and evaluated for their in vitro AChE inhibition activity as well as hepatotoxicity. All the hybrids were found to be non-toxic on HePG2 cell line at 200 µM (100 % cell viability) as compared to tacrine (35 % cell viability) after 24 h of incubation period. Enzyme kinetic studies carried out for one of the potent hybrids in the series A-1 (IC50 0.4 µM) revealed its mixed inhibition approach. Thus, compound A-1 can be used as principle template to further explore the mechanism of action of different targets involved in Alzheimer's disease (AD) which stands as an adequate chemical probe to be launched in an AD drug discovery program.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antineoplásicos/farmacología , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Glicoconjugados/farmacología , Tacrina/farmacología , Triazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glicoconjugados/química , Células Hep G2 , Humanos , Estructura Molecular , Relación Estructura-Actividad , Tacrina/química , Triazoles/química
2.
Bioorg Med Chem Lett ; 30(20): 127477, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32781220

RESUMEN

A novel series of triazole tethered coumarin-benzotriazole hybrids based on donepezil skeleton has been designed and synthesized as multifunctional agents for the treatment of Alzheimer's disease (AD). Among the synthesized compounds 13b showed most potent acetylcholinesterase (AChE) inhibition (IC50 = 0.059 µΜ) with mixed type inhibition scenario. Structure-activity relationship revealed that three-carbon alkyl chain connecting coumarin and triazole is well tolerable for inhibitory potential. Hybrids obtained from 4-hydroxycoumarin and 1-benzotriazole were most potent AChE inhibitors. The inhibitory potential of all compounds against butyrylcholinesterase was also evaluated but all showed negligible activity suggesting that the hybrid molecules are selective AChE inhibitors. 13b (most potent AChE inhibitor) also showed copper-induced Aß1-42 aggregation inhibition (34.26% at 50 µΜ) and chelating properties for metal ions (Cu2+, Fe2+, and Zn2+) involved in AD pathogenesis along with DNA protective potential against degenerative actions of OH radicals. Molecular modelling studies confirm the potential of 13b in blocking both PAS and CAS of AChE. In addition, interactions of 13b with Aß1-42 monomer are also streamlined. Therefore, hybrid 13b can act as an effective hit lead molecule for further development of selective AChE inhibitors as multifunctional anti-Alzheimer's agents.


Asunto(s)
Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Inhibidores de la Colinesterasa/farmacología , Cumarinas/farmacología , Fragmentos de Péptidos/antagonistas & inhibidores , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/tratamiento farmacológico , Triazoles/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Línea Celular Tumoral , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Relación Estructura-Actividad , Triazoles/química
3.
Expert Opin Ther Pat ; 32(10): 1079-1095, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36189616

RESUMEN

INTRODUCTION: Dihydrofolate reductase (DHFR) plays an important role in the biosynthesis of amino acid and folic acid. It participates by reducing dihydrofolate to tetrahydrofolate, in the presence of nicotinamide dinucleotide phosphate cofactor, and has been verified by various clinical studies to use DHFR as a target for the treatment of cancer and various bacterial infections. AREA COVERED: In this review, we have disclosed patents of synthetics and natural DHFR inhibitors with diaminopyrimidine and quinazoline nucleus from 2001. Additionally, this review highlights the clinical progression of numerous DHFR inhibitors received from the last five years. EXPERT OPINION: From 2001 to 2021, numerous active chemical scaffolds have been introduced and are exposed as lead candidates that have entered clinical trials as potent DHFR inhibitors. Moreover, researchers have paid considerable attention to the development of a new class of DHFR inhibitors with higher selectivity and potency. This development includes synthesis of synthetic as well as natural compounds that are potent DHFR inhibitors. On the basis of literature review, we can anticipate that there are a huge number of novel active molecules available for the future that could possess superior abilities to target this enzyme with a profound pharmacological profile.


Asunto(s)
Antagonistas del Ácido Fólico , Humanos , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Patentes como Asunto , Ácido Fólico , Aminoácidos , Tetrahidrofolatos , Quinazolinas , Niacinamida , Fosfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA