Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(10): 1071-1082, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30201994

RESUMEN

TLR3 is a sensor of double-stranded RNA that is indispensable for defense against infection with herpes simplex virus type 1 (HSV-1) in the brain. We found here that TLR3 was required for innate immune responses to HSV-1 in neurons and astrocytes. During infection with HSV-1, TLR3 recruited the metabolic checkpoint kinase complex mTORC2, which led to the induction of chemokines and trafficking of TLR3 to the cell periphery. Such trafficking enabled the activation of molecules (including mTORC1) required for the induction of type I interferons. Intracranial infection of mice with HSV-1 was exacerbated by impairment of TLR3 responses with an inhibitor of mTOR and was significantly 'rescued' by potentiation of TLR3 responses with an agonistic antibody to TLR3. These results suggest that the TLR3-mTORC2 axis might be a therapeutic target through which to combat herpes simplex encephalitis.


Asunto(s)
Encefalitis por Herpes Simple/inmunología , Diana Mecanicista del Complejo 2 de la Rapamicina/inmunología , Receptor Toll-Like 3/inmunología , Animales , Herpesvirus Humano 1 , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células 3T3 NIH
2.
J Virol ; 98(8): e0073724, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39016551

RESUMEN

Facilitates chromatin transcription (FACT) interacts with nucleosomes to promote gene transcription by regulating the dissociation and reassembly of nucleosomes downstream and upstream of RNA polymerase II (Pol II). A previous study reported that herpes simplex virus 1 (HSV-1) regulatory protein ICP22 interacted with FACT and was required for its recruitment to the viral DNA genome in HSV-1-infected cells. However, the biological importance of interactions between ICP22 and FACT in relation to HSV-1 infection is unclear. Here, we mapped the minimal domain of ICP22 required for its efficient interaction with FACT to a cluster of five basic amino acids in ICP22. A recombinant virus harboring alanine substitutions in this identified cluster led to the decreased accumulation of viral mRNAs from UL54, UL38, and UL44 genes, reduced Pol II occupancy of these genes in MRC-5 cells, and impaired HSV-1 virulence in mice following ocular or intracranial infection. Furthermore, the treatment of mice infected with wild-type HSV-1 with CBL0137, a FACT inhibitor currently being investigated in clinical trials, significantly improved the survival rate of mice. These results suggested that the interaction between ICP22 and FACT was required for efficient HSV-1 gene expression and pathogenicity. Therefore, FACT might be a potential therapeutic target for HSV-1 infection.IMPORTANCEICP22 is a well-known regulatory factor of HSV-1 gene expression, but its mechanism(s) are poorly understood. Although the interaction of FACT with ICP22 was reported previously, its significance in HSV-1 infection is unknown. Given that FACT is involved in gene transcription, it is of interest to investigate this interaction as it relates to HSV-1 gene expression. To determine a direct link between the interaction and HSV-1 infection, we mapped a minimal domain of ICP22 required for its efficient interaction with FACT and generated a recombinant virus carrying mutations in the identified domain. Using the recombinant virus, we obtained evidence suggesting that the interaction between ICP22 and FACT promoted Pol II transcription from HSV-1 genes and viral virulence in mice. In addition, CBL0137, an inhibitor of FACT, effectively protected mice from lethal HSV-1 infection, suggesting FACT might be a potential target for the development of novel anti-HSV drugs.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpes Simple , Herpesvirus Humano 1 , Proteínas Inmediatas-Precoces , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Animales , Ratones , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Herpes Simple/virología , Herpes Simple/metabolismo , Humanos , Células Vero , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Chlorocebus aethiops , Replicación Viral , Virulencia , Línea Celular , Femenino , Ratones Endogámicos BALB C , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Transcripción Genética
3.
J Virol ; 98(7): e0074724, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38819171

RESUMEN

Although the herpes simplex virus type 1 (HSV-1) genome was thought to contain approximately 80 different protein coding sequences (CDSs), recent multi-omics analyses reported HSV-1 encodes more than 200 potential CDSs. However, few of the newly identified CDSs were confirmed to be expressed at the peptide or protein level in HSV-1-infected cells. Furthermore, the impact of the proteins they encode on HSV-1 infection is largely unknown. This study focused on a newly identified CDS, UL31.6. Re-analyzation of our previous chemical proteomics data verified that UL31.6 was expressed at the peptide level in HSV-1-infected cells. Antisera raised against a viral protein encoded by UL31.6 (pUL31.6) reacted with a protein with an approximate molecular mass of 37 kDa in lysates of Vero cells infected with each of three HSV-1 strains. pUL31.6 was efficiently dissociated from virions in high-salt solution. A UL31.6-null mutation had a minimal effect on HSV-1 gene expression, replication, cell-to-cell spread, and morphogenesis in Vero cells; in contrast, it significantly reduced HSV-1 cell-to-cell spread in three neural cells but not in four non-neural cells including Vero cells. The UL31.6-null mutation also significantly reduced the mortality and viral replication in the brains of mice after intracranial infection, but had minimal effects on pathogenic manifestations in and around the eyes, and viral replication detected in the tear films of mice after ocular infection. These results indicated that pUL31.6 was a tegument protein and specifically acted as a neurovirulence factor by potentially promoting viral transmission between neuronal cells in the central nervous system.IMPORTANCERecent multi-omics analyses reported the herpes simplex virus type 1 (HSV-1) genome encodes an additional number of potential coding sequences (CDSs). However, the expressions of these CDSs at the peptide or protein levels and the biological effects of these CDSs on HSV-1 infection remain largely unknown. This study annotated a cryptic orphan CDS, termed UL31.6, an HSV-1 gene that encodes a tegument protein with an approximate molecular mass of 37 kDa, which specifically acts as a neurovirulence factor. Our study indicates that HSV-1 proteins important for viral pathogenesis remain to be identified and a comprehensive understanding of the pathogenesis of HSV-1 will require not only the identification of cryptic orphan CDSs using emerging technologies but also step-by-step and in-depth analyses of each of the cryptic orphan CDSs.


Asunto(s)
Herpesvirus Humano 1 , Proteínas Virales , Replicación Viral , Animales , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidad , Herpesvirus Humano 1/fisiología , Chlorocebus aethiops , Células Vero , Ratones , Proteínas Virales/genética , Proteínas Virales/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Herpes Simple/virología , Virulencia , Femenino , Humanos
4.
J Biol Chem ; 299(9): 105128, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543361

RESUMEN

Gliomas are the most prevalent primary tumor of the central nervous system. Despite advances in imaging technologies, neurosurgical techniques, and radiotherapy, a cure for high-grade glioma remains elusive. Several groups have reported that protein tyrosine phosphatase receptor type Z (PTPRZ) is highly expressed in glioblastoma, and that targeting PTPRZ attenuates tumor growth in mice. PTPRZ is modified with diverse glycan, including the PTPRZ-unique human natural killer-1 capped O-mannosyl core M2 glycans. However, the regulation and function of these unique glycans are unclear. Using CRISPR genome-editing technology, we first demonstrated that disruption of the PTPRZ gene in human glioma LN-229 cells resulted in profoundly reduced tumor growth in xenografted mice, confirming the potential of PTPRZ as a therapeutic target for glioma. Furthermore, multiple glycan analyses revealed that PTPRZ derived from glioma patients and from xenografted glioma expressed abundant levels of human natural killer-1-capped O-Man glycans via extrinsic signals. Finally, since deficiency of O-Man core M2 branching enzyme N-acetylglucosaminyltransferase IX (GnT-IX) was reported to reduce PTPRZ protein levels, we disrupted the GnT-IX gene in LN-229 cells and found a significant reduction of glioma growth both in vitro and in the xenograft model. These results suggest that the PTPR glycosylation enzyme GnT-IX may represent a promising therapeutic target for glioma.


Asunto(s)
Glioma , N-Acetilglucosaminiltransferasas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Animales , Humanos , Ratones , Encéfalo/enzimología , Encéfalo/fisiopatología , Glioma/fisiopatología , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Polisacáridos/metabolismo , Línea Celular Tumoral , Femenino , Ratones SCID , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/deficiencia , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Técnicas de Silenciamiento del Gen
5.
Microbiol Immunol ; 68(4): 148-154, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402407

RESUMEN

More than 100 different herpes simplex virus 1 (HSV-1) genes belong to three major classes, and their expression is coordinately regulated and sequentially ordered in a cascade. This complex HSV-1 gene expression is thought to be regulated by various viral and host cellular proteins. A host cellular protein, Myb-binding protein 1A (MYBBP1A), has been reported to be associated with HSV-1 viral genomes in conjunction with viral and cellular proteins critical for DNA replication, repair, and transcription within infected cells. However, the role(s) of MYBBP1A in HSV-1 infections remains unclear. In this study, we examined the effects of MYBBP1A depletion on HSV-1 infection and found that MYBBP1A depletion significantly reduced HSV-1 replication, as well as the accumulation of several viral proteins. These results suggest that MYBBP1A is an important host cellular factor that contributes to HSV-1 replication, plausibly by promoting viral gene expression.


Asunto(s)
Proteínas de Unión al ADN , Herpes Simple , Herpesvirus Humano 1 , Proteínas de Unión al ARN , Factores de Transcripción , Humanos , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Herpes Simple/virología , Herpesvirus Humano 1/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Proteínas Virales/genética , Proteínas Virales/farmacología , Replicación Viral
6.
J Biol Chem ; 298(6): 101880, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35367207

RESUMEN

The deposition of amyloid ß (Aß) in blood vessels of the brain, known as cerebral amyloid angiopathy (CAA), is observed in most patients with Alzheimer's disease (AD). Compared with the pathology of CAA in humans, the pathology in most mouse models of AD is not as evident, making it difficult to examine the contribution of CAA to the pathogenesis of AD. On the basis of biochemical analyses that showed blood levels of soluble amyloid precursor protein (APP) in rats and mice were markedly lower than those measured in human samples, we hypothesized that endothelial APP expression would be markedly lower in rodents and subsequently generated mice that specifically express human WT APP (APP770) in endothelial cells (ECs). The resulting EC-APP770+ mice exhibited increased levels of serum Aß and soluble APP, indicating that endothelial APP makes a critical contribution to blood Aß levels. Even though aged EC-APP770+ mice did not exhibit Aß deposition in the cortical blood vessels, crossing these animals with APP knock-in mice (AppNL-F/NL-F) led to an expanded CAA pathology, as evidenced by increased amounts of amyloid accumulated in the cortical blood vessels. These results highlight an overlooked interplay between neuronal and endothelial APP in brain vascular Aß deposition. We propose that these EC-APP770+:AppNL-F/NL-F mice may be useful to study the basic molecular mechanisms behind the possible breakdown of the blood-brain barrier upon administration of anti-Aß antibodies.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Encéfalo , Angiopatía Amiloide Cerebral , Células Endoteliales , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones Transgénicos , Ratas
7.
J Neurochem ; 166(3): 547-559, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37005741

RESUMEN

Astrocytes are the most abundant glial cell type in the brain, where they participate in various homeostatic functions. Transcriptomically, diverse astrocyte subpopulations play distinct roles during development and disease progression. However, the biochemical identification of astrocyte subtypes, especially by membrane surface protein glycosylation, remains poorly investigated. Protein tyrosine phosphatase receptor type zeta (PTPRZ) is a highly expressed membrane protein in CNS glia cells that can be modified with diverse glycosylation, including the unique HNK-1 capped O-mannosyl (O-Man) core M2 glycan mediated by brain-specific branching enzyme GnT-IX. Although PTPRZ modified with HNK-1 capped O-Man glycans (HNK-1-O-Man+ PTPRZ) is increased in reactive astrocytes of demyelination model mice, whether such astrocytes emerge in a broad range of disease-associated conditions or are limited to conditions associated with demyelination remains unclear. Here, we show that HNK-1-O-Man+ PTPRZ localizes in hypertrophic astrocytes of damaged brain areas in patients with multiple sclerosis. Furthermore, we show that astrocytes expressing HNK-1-O-Man+ PTPRZ are present in two demyelination mouse models (cuprizone-fed mice and a vanishing white matter disease model), while traumatic brain injury does not induce glycosylation. Administration of cuprizone to Aldh1l1-eGFP and Olig2KICreER/+ ;Rosa26eGFP mice revealed that cells expressing HNK-1-O-Man+ PTPRZ are derived from cells in the astrocyte lineage. Notably, GnT-IX but not PTPRZ mRNA was up-regulated in astrocytes isolated from the corpus callosum of cuprizone model mice. These results suggest that the unique PTPRZ glycosylation plays a key role in the patterning of demyelination-associated astrocytes.


Asunto(s)
Astrocitos , Enfermedades Desmielinizantes , Animales , Ratones , Astrocitos/metabolismo , Encéfalo/metabolismo , Cuprizona/toxicidad , Cuprizona/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Modelos Animales de Enfermedad , Glicosilación , Ratones Endogámicos C57BL , Polisacáridos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo
8.
Curr Opin Rheumatol ; 35(6): 309-316, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37490353

RESUMEN

PURPOSE OF REVIEW: In patients with systemic sclerosis (SSc), vascular manifestations precede skin and organ fibrosis. There is increasing evidence demonstrating a pathogenic link between early vascular injury and subsequent development of tissue fibrosis. RECENT FINDINGS: Our knowledge of cellular and molecular mechanisms underlying a unique relationship between SSc-related vasculopathy and fibrosis has changed over the last few years. There is increasing evidence showing viral infection as a potential trigger elucidating vascular injury. Due to defective vascular repair machinery, this initial event results in endothelial cell activation and apoptosis as well as the recruitment of inflammatory/immune cells, leading to endothelial-to-mesenchymal transition. This sequential process induces destructive vasculopathy in capillaries, fibroproliferative vascular lesions in arteries, and excessive fibrosis in the surrounding tissue. A variety of molecular mechanisms and pathways involved in vascular remodeling linked to subsequent excessive fibrosis have been identified and serve as attractive therapeutic targets for SSc. SUMMARY: Endothelial injury may play a central role in connecting three features that characterize SSc pathogenesis: vasculopathy, chronic inflammation, and fibrosis. Our understanding of the processes responsible for myofibroblast differentiation triggered by vascular injury will provide the rationale for novel targeted therapies for SSc.


Asunto(s)
Esclerodermia Sistémica , Enfermedades Vasculares , Lesiones del Sistema Vascular , Humanos , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/tratamiento farmacológico , Fibrosis , Inflamación/tratamiento farmacológico
9.
J Virol ; 96(24): e0142922, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36448808

RESUMEN

We investigated whether A-type lamins (lamin A/C) and lamin B receptor (LBR) are redundant during herpes simplex virus 1 (HSV-1) infection in HeLa cells expressing lamin A/C and LBR. Lamin A/C and LBR double knockout (KO) in HSV-1-infected HeLa cells significantly impaired expressions of HSV-1 early and late genes, maturation of replication compartments, marginalization of host chromatin to the nuclear periphery, enlargement of host cell nuclei, and viral DNA replication. Phenotypes of HSV-1-infected HeLa cells were restored by the ectopic expression of lamin A/C or LBR in lamin A/C and LBR double KO cells. Of note, lamin A/C single KO, but not LBR single KO, promoted the aberrant accumulation of virus particles outside the inner nuclear membrane (INM) and viral replication, as well as decreasing the frequency of virus particles inside the INM without affecting viral gene expression and DNA replication, time-spatial organization of replication compartments and host chromatin, and nuclear enlargement. These results indicated that lamin A/C and LBR had redundant and specific roles during HSV-1 infection. Thus, lamin A/C and LBR redundantly regulated the dynamics of the nuclear architecture, including the time-spatial organization of replication compartments and host chromatin, as well as promoting nuclear enlargement for efficient HSV-1 gene expression and DNA replication. In contrast, lamin A/C inhibited HSV-1 nuclear export through the INM during viral nuclear egress, which is a unique property of lamin A/C. IMPORTANCE This study demonstrated that lamin A/C and LBR had redundant functions associated with HSV-1 gene expression and DNA replication by regulating the dynamics of the nuclear architecture during HSV-1 infection. This is the first report to demonstrate the redundant roles of lamin A/C and LBR as well as the involvement of LBR in the regulation of these viral and cellular features in HSV-1-infected cells. These findings provide evidence for the specific property of lamin A/C to inhibit HSV-1 nuclear egress, which has long been considered but without direct proof.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Laminas , Humanos , Cromatina/metabolismo , Replicación del ADN , ADN Viral/genética , ADN Viral/metabolismo , Células HeLa , Herpes Simple/genética , Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminas/genética , Laminas/metabolismo , Replicación Viral , Receptor de Lamina B
10.
J Virol ; 96(2): e0170421, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34730397

RESUMEN

During the nuclear export of nascent nucleocapsids of herpesviruses, the nucleocapsids bud through the inner nuclear membrane (INM) by acquiring the INM as a primary envelope (primary envelopment). We recently reported that herpes simplex virus 1 (HSV-1) nuclear egress complex (NEC), which consists of UL34 and UL31, interacts with an endosomal sorting complex required for transport III (ESCRT-III) adaptor ALIX and recruits ESCRT-III machinery to the INM for efficient primary envelopment. In this study, we identified a cluster of six arginine residues in the disordered domain of UL34 as a minimal region required for the interaction with ALIX, as well as the recruitment of ALIX and an ESCRT-III protein CHMP4B to the INM in HSV-1-infected cells. Mutations in the arginine cluster exhibited phenotypes similar to those with ESCRT-III inhibition reported previously, including the mislocalization of NEC, induction of membranous invagination structures containing enveloped virions, aberrant accumulation of enveloped virions in the invaginations and perinuclear space, and reduction of viral replication. We also showed that the effect of the arginine cluster in UL34 on HSV-1 replication was dependent primarily on ALIX. These results indicated that the arginine cluster in the disordered domain of UL34 was required for the interaction with ALIX and the recruitment of ESCRT-III machinery to the INM to promote primary envelopment. IMPORTANCE Herpesvirus UL34 homologs contain conserved amino-terminal domains that mediate vesicle formation through interactions with UL31 homologs during primary envelopment. UL34 homologs also comprise other domains adjacent to their membrane-anchoring regions, which differ in length, are variable in herpesviruses, and do not form distinguished secondary structures. However, the role of these disordered domains in infected cells remains to be elucidated. In this study, we present data suggesting that the arginine cluster in the disordered domain of HSV-1 UL34 mediates the interaction with ALIX, thereby leading to the recruitment of ESCRT-III machinery to the INM for efficient primary envelopment. This is the first study to report the role of the disordered domain of a UL34 homolog in herpesvirus infections.


Asunto(s)
Arginina , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Herpesvirus Humano 1/fisiología , Proteínas Virales/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos , Morfogénesis , Mutación , Membrana Nuclear/metabolismo , Nucleocápside/metabolismo , Fosforilación , Proteínas Virales/química , Proteínas Virales/genética , Virión/crecimiento & desarrollo , Liberación del Virus , Replicación Viral
11.
Microbiol Immunol ; 67(3): 114-119, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36606601

RESUMEN

Wild-type herpes simplex virus (HSV) strains infrequently mediate cell-cell fusion in cell cultures and barely induce large multinucleated cells. In this study, we established a system to quantify infrequent cell-cell fusion induced by wild-type HSV strains. The established system clarified that the HSV-1 envelope glycoprotein B and its N-glycosylation at asparagine at position 141 were required for efficient cell-cell fusion. This study provides a link between cell-cell fusion induced by wild-type HSV-1 and viral pathogenesis in vivo.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Glicosilación , Fusión Celular , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
12.
Cell ; 132(6): 935-44, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-18358807

RESUMEN

Glycoprotein B (gB) is one of the essential components for infection by herpes simplex virus-1 (HSV-1). Although several cellular receptors that associate with glycoprotein D (gD), such as herpes virus entry mediator (HVEM) and Nectin-1, have been identified, specific molecules that mediate HSV-1 infection by associating with gB have not been elucidated. Here, we found that paired immunoglobulin-like type 2 receptor (PILR) alpha associates with gB, and cells transduced with PILRalpha become susceptible to HSV-1 infection. Furthermore, HSV-1 infection of human primary cells expressing both HVEM and PILRalpha was blocked by either anti-PILRalpha or anti-HVEM antibody. Our results demonstrate that cellular receptors for both gB and gD are required for HSV-1 infection and that PILRalpha plays an important role in HSV-1 infection as a coreceptor that associates with gB. These findings uncover a crucial aspect of the mechanism underlying HSV-1 infection.


Asunto(s)
Herpes Simple/metabolismo , Herpesvirus Humano 1/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Células CHO , Línea Celular , Células Cultivadas , Cricetinae , Cricetulus , Herpes Simple/virología , Humanos , Transfección
13.
J Virol ; 95(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33298538

RESUMEN

AIM2 is a cytosolic DNA sensor of the inflammasome, which induces critical innate immune responses against various invading pathogens. Earlier biochemical studies showed that the binding of AIM2 to DNA triggered the self-oligomerization of AIM2, which is essential for AIM2 inflammasome activation. We recently reported that VP22, a virion tegument protein of herpes simplex virus 1 (HSV-1), inhibited activation of the AIM2 inflammasome in HSV-1-infected cells by preventing AIM2 oligomerization. VP22 binds non-specifically to DNA; however, its role in HSV-1 replication is unclear. We investigated the role of VP22 DNA binding activity in the VP22-mediated inhibition of AIM2 inflammasome activation. We identified a VP22 domain encoded by amino acids 227 to 258 as the minimal domain required for its binding to DNA in vitro Consecutive alanine substitutions in this domain substantially impaired the DNA binding activity of VP22 in vitro and attenuated the inhibitory effect of VP22 on AIM2 inflammasome activation in an AIM2 inflammasome reconstitution system. The inhibitory effect of VP22 on AIM2 inflammasome activation was completely abolished in macrophages infected with a recombinant virus harboring VP22 with one of the consecutive alanine substitutions, similar to the effect of a VP22-null mutant virus. These results suggested that the DNA binding activity of VP22 is critical for VP22-mediated AIM2 inflammasome activation in HSV1-infected cells.IMPORTANCE VP22, a major component of the HSV-1 virion tegument, is conserved in alphaherpesviruses and has structural similarity to ORF52, a component of the virion tegument that is well-conserved in gammaherpesviruses. Although the potential DNA binding activity of VP22 was discovered decades ago, its significance in the HSV-1 life cycle is poorly understood. Here, we show that the DNA binding activity of VP22 is critical for the inhibition of AIM2 inflammasome activation induced in HSV-1-infected cells. This is the first report to show a role for the DNA binding activity of VP22 in the HSV-1 life cycle, allowing the virus to evade AIM2 inflammasome activation, which is critical for its replication in vivo.

14.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177205

RESUMEN

Viral cell-to-cell spread, a method employed by several viral families for entrance via cell junctions, is highly relevant to the pathogenesis of various viral infections. Cell-to-cell spread of herpes simplex virus 1 (HSV-1) is known to depend greatly on envelope glycoprotein E (gE). However, the molecular mechanism by which gE acts in HSV-1 cell-to-cell spread and the mechanisms of cell-to-cell spread by other herpesviruses remain poorly understood. Here, we describe our identification of prohibitin-1 as a novel gE-interacting host cell protein. Ectopic expression of prohibitin-1 increased gE-dependent HSV-1 cell-to-cell spread. As observed with the gE-null mutation, decreased expression or pharmacological inhibition of prohibitin-1 reduced HSV-1 cell-to-cell spread without affecting the yield of virus progeny. Similar effects were produced by pharmacological inhibition of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, wherein prohibitin-1 acts as a protein scaffold and is required for induction of this pathway. Furthermore, artificial activation of the MAPK/ERK pathway restored HSV-1 cell-to-cell spread impaired by the gE-null mutation. Notably, pharmacological inhibition of prohibitins or the MAPK/ERK pathway reduced viral cell-to-cell spread of representative members in all herpesvirus subfamilies. Our results suggest that prohibitin-1 contributes to gE-dependent HSV-1 cell-to-cell spread via the MAPK/ERK pathway and that this mechanism is conserved throughout the Herpesviridae, whereas gE is conserved only in the Alphaherpesvirinae subfamily.IMPORTANCE Herpesviruses are ubiquitous pathogens of various animals, including humans. These viruses primarily pass through cell junctions to spread to uninfected cells. This method of cell-to-cell spread is an important pathogenic characteristic of these viruses. Here, we show that the host cell protein prohibitin-1 contributes to HSV-1 cell-to-cell spread via a downstream intracellular signaling cascade, the MAPK/ERK pathway. We also demonstrate that the role of the prohibitin-1-mediated MAPK/ERK pathway in viral cell-to-cell spread is conserved in representative members of every herpesvirus subfamily. This study has revealed a common molecular mechanism of the cell-to-cell spread of herpesviruses.


Asunto(s)
Comunicación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Represoras/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Células A549 , Quinasas MAP Reguladas por Señal Extracelular/genética , Herpes Simple/genética , Herpes Simple/metabolismo , Humanos , Uniones Intercelulares , Proteínas Quinasas Activadas por Mitógenos/genética , Prohibitinas , Proteínas Represoras/genética , Proteínas del Envoltorio Viral/genética , Replicación Viral
15.
Rheumatology (Oxford) ; 61(11): 4445-4454, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35179548

RESUMEN

OBJECTIVES: To assess the efficacy and safety of branched chain amino acids (BCAAs) in the treatment of PM/DM prior to official approval of their use in Japan. METHODS: Treatment naïve adults with PM/DM were enrolled in a randomized, double-blind trial to receive either TK-98 (drug name of BCAAs) or placebo in addition to conventional treatment. After 12 weeks, patients with an average manual muscle test (MMT) score <9.5 were enrolled in an open label extension study for a further 12 weeks. The primary endpoint was the change of the MMT score at 12 weeks. The secondary endpoints were the clinical response and the change of functional index (FI). RESULTS: Forty-seven patients were randomized either to the TK-98 (n = 24) or placebo (n = 23) group. The changes of MMT scores at 12 weeks were 0.70 (0.19) [mean (s.e.m.)] and 0.69 (0.18), respectively (P = 0.98). Thirteen patients from the TK-98 group and 12 from the placebo group were enrolled in the extension study. The MMT scores in both groups improved similarly. The increase of the FI scores of the shoulder flexion at 12 weeks was significantly greater in the TK-98 group [27.9 (5.67) vs 12.8 (5.67) for the right shoulder flexion, and 27.0 (5.44) vs 13.4 (5.95) for the left shoulder; P < 0.05]. Frequencies of adverse events up to 12 weeks were similar. CONCLUSION: BCAAs showed no effect on the improvement of the muscle strength evaluated by MMT and the clinical response. However, they were partly effective for improving dynamic repetitive muscle functions. TRIAL REGISTRATION: UMIN-CTR Clinical Trial, https://center6.umin.ac.jp/, UMIN000016233.


Asunto(s)
Dermatomiositis , Polimiositis , Adulto , Humanos , Aminoácidos de Cadena Ramificada/uso terapéutico , Dermatomiositis/tratamiento farmacológico , Método Doble Ciego , Fuerza Muscular , Polimiositis/tratamiento farmacológico , Resultado del Tratamiento
16.
Mol Cell ; 53(3): 393-406, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24507715

RESUMEN

Although thousands of long noncoding RNAs (lncRNAs) are localized in the nucleus, only a few dozen have been functionally characterized. Here we show that nuclear enriched abundant transcript 1 (NEAT1), an essential lncRNA for the formation of nuclear body paraspeckles, is induced by influenza virus and herpes simplex virus infection as well as by Toll-like receptor3-p38 pathway-triggered poly I:C stimulation, resulting in excess formation of paraspeckles. We found that NEAT1 facilitates the expression of antiviral genes including cytokines such as interleukin-8 (IL8). We found that splicing factor proline/glutamine-rich (SFPQ), a NEAT1-binding paraspeckle protein, is a repressor of IL8 transcription, and that NEAT1 induction relocates SFPQ from the IL8 promoter to the paraspeckles, leading to transcriptional activation of IL8. Together, our data show that NEAT1 plays an important role in the innate immune response through the transcriptional regulation of antiviral genes by the stimulus-responsive cooperative action of NEAT1 and SFPQ.


Asunto(s)
Inmunidad Innata/genética , Interleucina-8/genética , ARN Largo no Codificante/fisiología , Proteínas de Unión al ARN/metabolismo , Regulación de la Expresión Génica , Células HeLa , Herpesvirus Humano 1/inmunología , Humanos , Virus del Sarampión/inmunología , Orthomyxoviridae/inmunología , Factor de Empalme Asociado a PTB , Regiones Promotoras Genéticas , Transporte de Proteínas , ARN Largo no Codificante/genética , Transcripción Genética
17.
J Allergy Clin Immunol ; 148(6): 1575-1588.e7, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33965431

RESUMEN

BACKGROUND: Epidemiologic studies have yielded conflicting results regarding the influence of a single bout of prolonged high-intensity exercise on viral infection. OBJECTIVE: We sought to learn whether prolonged high-intensity exercise either exacerbates or ameliorates herpes simplex virus type 2 (HSV-2) infection according to the interval between virus exposure and exercise. METHODS: Mice were intravaginally infected with HSV-2 and exposed to run on the treadmill. RESULTS: Prolonged high-intensity exercise 17 hours after infection impaired the clearance of HSV-2, while exercise 8 hours after infection enhanced the clearance of HSV-2. These impaired or enhanced immune responses were related to a transient decrease or increase in the number of blood-circulating plasmacytoid dendritic cells. Exercise-induced glucocorticoids transiently decreased the number of circulating plasmacytoid dendritic cells by facilitating their homing to the bone marrow via the CXCL12-CXCR4 axis, which led to their subsequent increase in the blood. CONCLUSION: A single bout of prolonged high-intensity exercise can be either deleterious or beneficial to antiviral immunity.


Asunto(s)
Células Dendríticas/inmunología , Glucocorticoides/metabolismo , Herpes Simple/inmunología , Herpesvirus Humano 2/fisiología , Animales , Quimiocina CXCL12/metabolismo , Ejercicio Físico , Humanos , Inmunidad , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Condicionamiento Físico Animal , Receptores CXCR4/metabolismo
18.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32999028

RESUMEN

Glycerophospholipids are major components of cell membranes. Phosphatidylethanolamine (PE) is a glycerophospholipid that is involved in multiple cellular processes, such as membrane fusion, the cell cycle, autophagy, and apoptosis. In this study, we investigated the role of PE biosynthesis in herpes simplex virus 1 (HSV-1) infection by knocking out the host cell gene encoding phosphate cytidylyltransferase 2, ethanolamine (Pcyt2), which is a key rate-limiting enzyme in one of the two major pathways for PE biosynthesis. Pcyt2 knockout reduced HSV-1 replication and caused an accumulation of unenveloped and partially enveloped nucleocapsids in the cytoplasm of an HSV-1-infected cell culture. A similar phenotype was observed when infected cells were treated with meclizine, which is an inhibitor of Pcyt2. In addition, treatment of HSV-1-infected mice with meclizine significantly reduced HSV-1 replication in the mouse brains and improved their survival rates. These results indicated that PE biosynthesis mediated by Pcyt2 was required for efficient HSV-1 envelopment in the cytoplasm of infected cells and for viral replication and pathogenicity in vivo The results also identified the PE biosynthetic pathway as a possible novel target for antiviral therapy of HSV-associated diseases and raised an interesting possibility for meclizine repositioning for treatment of these diseases, since it is an over-the-counter drug that has been used for decades against nausea and vertigo in motion sickness.IMPORTANCE Glycerophospholipids in cell membranes and virus envelopes often affect viral entry and budding. However, the role of glycerophospholipids in membrane-associated events in viral replication in herpesvirus-infected cells has not been reported to date. In this study, we have presented data showing that cellular PE biosynthesis mediated by Pcyt2 is important for HSV-1 envelopment in the cytoplasm, as well as for viral replication and pathogenicity in vivo This is the first report showing the importance of PE biosynthesis in herpesvirus infections. Our results showed that inhibition of Pcyt2, a key cell enzyme for PE synthesis, significantly inhibited HSV-1 replication and pathogenicity in mice. This suggested that the PE biosynthetic pathway, as well as the HSV-1 virion maturation pathway, can be a target for the development of novel anti-HSV drugs.


Asunto(s)
Citoplasma/virología , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Morfogénesis/fisiología , Fosfatidiletanolaminas/biosíntesis , Fosfatidiletanolaminas/fisiología , Animales , Chlorocebus aethiops , Citoplasma/metabolismo , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos ICR , Nucleocápside/metabolismo , ARN Nucleotidiltransferasas/genética , Células Vero , Virión/fisiología , Virulencia , Internalización del Virus , Liberación del Virus , Replicación Viral/fisiología
19.
J Virol ; 94(18)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32611749

RESUMEN

Us3 proteins of herpes simplex virus 1 (HSV-1) and HSV-2 are multifunctional serine-threonine protein kinases. Here, we identified an HSV-2 tegument protein, UL7, as a novel physiological substrate of HSV-2 Us3. Mutations in HSV-2 UL7, which precluded Us3 phosphorylation of the viral protein, significantly reduced mortality, viral replication in the vagina, and development of vaginal disease in mice following vaginal infection. These results indicated that Us3 phosphorylation of UL7 in HSV-2 was required for efficient viral replication and pathogenicity in vivo Of note, this phosphorylation was conserved in UL7 of chimpanzee herpesvirus (ChHV), which phylogenetically forms a monophyletic group with HSV-2 and the resurrected last common ancestral UL7 for HSV-2 and ChHV. In contrast, the phosphorylation was not conserved in UL7s of HSV-1, which belongs to a sister clade of the monophyletic group, the resurrected last common ancestor for HSV-1, HSV-2, and ChHV, and other members of the genus Simplexvirus that are phylogenetically close to these viruses. Thus, evolution of Us3 phosphorylation of UL7 coincided with the phylogeny of simplex viruses. Furthermore, artificially induced Us3 phosphorylation of UL7 in HSV-1, in contrast to phosphorylation in HSV-2, had no effect on viral replication and pathogenicity in mice. Our results suggest that HSV-2 and ChHV have acquired and maintained Us3 phosphoregulation of UL7 during their evolution because the phosphoregulation had an impact on viral fitness in vivo, whereas most other simplex viruses have not because the phosphorylation was not necessary for efficient fitness of the viruses in vivoIMPORTANCE It has been hypothesized that the evolution of protein phosphoregulation drives phenotypic diversity across species of organisms, which impacts fitness during their evolution. However, there is a lack of information regarding linkage between the evolution of viral phosphoregulation and the phylogeny of virus species. In this study, we clarified the novel HSV-2 Us3 phosphoregulation of UL7 in infected cells, which is important for viral replication and pathogenicity in vivo We also showed that the evolution of Us3 phosphoregulation of UL7 was linked to the phylogeny of viruses that are phylogenetically close to HSV-2 and to the phosphorylation requirements for the efficient in vivo viral fitness of HSV-2 and HSV-1, which are representative of viruses that have and have not evolved phosphoregulation, respectively. This study reports the first evidence showing that evolution of viral phosphoregulation coincides with phylogeny of virus species and supports the hypothesis regarding the evolution of viral phosphoregulation during viral evolution.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpes Genital/virología , Herpesvirus Humano 2/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de la Matriz Viral/genética , Proteínas Virales/genética , Proteínas Estructurales Virales/genética , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Evolución Molecular , Femenino , Aptitud Genética , Células HEK293 , Herpes Genital/mortalidad , Herpesvirus Humano 1/clasificación , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidad , Herpesvirus Humano 2/clasificación , Herpesvirus Humano 2/metabolismo , Herpesvirus Humano 2/patogenicidad , Humanos , Ratones , Fosforilación , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vagina/virología , Células Vero , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/metabolismo , Virulencia , Replicación Viral
20.
Mod Rheumatol ; 31(4): 834-842, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32990111

RESUMEN

OBJECTIVES: The Lupus Damage Index Questionnaire (LDIQ) is a validated patient-reported outcome measure to assess accumulated damage in systemic lupus erythematosus (SLE). We aimed to translate it into Japanese and further investigate its validity and reliability. METHODS: The English version of the LDIQ was translated into Japanese and administered to Japanese patients with SLE (n = 259) at our university clinic. Physicians simultaneously completed the Systemic Lupus International Collaborating Clinics Damage Index (SDI) and SLE Disease Activity Index 2000 (SLEDAI-2K). Patients were prospectively followed for a repeat assessment the following year. RESULTS: The median LDIQ score was 2.0. The LDIQ demonstrated substantial correlation with the SDI but poor correlation with the SLEDAI-2K (Spearman's ρ = 0.75 and -0.08, respectively). These results suggested its convergent and discriminant validity. The LDIQ demonstrated good test-retest reliability (intraclass correlation coefficient = 0.85). When the effect size and standardized response mean for the LDIQ were assessed only in patients who had a change ≥1 in the SDI, they demonstrated a small to moderate responsiveness: 0.43 and 0.59, respectively. CONCLUSION: The Japanese version of the LDIQ had acceptable reliability and validity and its performance was comparable with the original version.


Asunto(s)
Lupus Eritematoso Sistémico/patología , Índice de Severidad de la Enfermedad , Encuestas y Cuestionarios , Traducciones , Adulto , Anciano , Femenino , Humanos , Japón , Lupus Eritematoso Sistémico/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Medición de Resultados Informados por el Paciente , Médicos , Estudios Prospectivos , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA