Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 477: 64-69, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34019880

RESUMEN

Cdc42, a Rho family low molecular weight G protein, has important roles in various cell functions, including cytoskeletal rearrangement, cell adhesion and cell proliferation and differentiation. To investigate the involvement of Cdc42 in the activities of vascular endothelial cells, we generated Cdc42 conditional knockout mice in which Cdc42 was time -specifically deficient in vascular endothelial cells (Cdc42 â€‹fl/fl; VE-Cad CreERT: Cdc42 cKO). When the Cdc42 gene was deleted after birth, Cdc42 cKO mice were smaller than the control mice, and died between postnatal day 8 (P8) and P10. Necropsy findings confirmed that these mice had various pathological aberrances in the vessels of most organs, such as blood flow congestion and blood cell invasion. Electron microscopic observations also revealed that capillary endothelial cells were detached from the basement membrane as well as phagocytosis of dead endothelial cells induced by macrophages. Moreover, vascular sprouting from aortic rings induced by VEGF-A was diminished in samples from the Cdc42 cKO mice because of an endothelial cell proliferation defect. These results suggest that Cdc42 in vascular endothelial cells has important roles in blood vessel formation after birth.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Células Endoteliales/fisiología , Neovascularización Fisiológica/fisiología , Proteína de Unión al GTP cdc42/fisiología , Animales , Ratones Noqueados
2.
Langmuir ; 36(8): 1887-1897, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32031815

RESUMEN

A combined atomic force microscope (AFM)-peristaltic pump system was used to determine the effect of a flow on the forces between two negatively charged surfaces (silica particle and silicon wafer) in aqueous solutions containing surfactants. The effect of the surfactant charge on the forces was determined by using an anionic surfactant (sodium dodecyl sulfate, SDS) and a cationic surfactant (dodecyltrimethylammonium bromide, DTAB) of the same chain length. The surfactant concentration effect was determined by using concentrations up to the critical micelle concentration. In the case of SDS, a flow reduced the range and magnitude of the repulsive forces. The force range reduction was explained by a shrinking of the diffuse layers, due to the deformation of the diffuse layer by the flow. The force magnitude reduction was explained by (1) the increased electrostatic screening due to the thinner diffuse layers and (2) an increased adsorption of specific ions, such as Na+, to the silica surfaces. In the case of DTAB, a concentration (8.0 mM) that gave an attractive force in the absence of a flow gave a repulsive force in the presence of a flow. Comparison of AFM images of a silicon wafer in DTAB measured in the absence and presence of a liquid flow showed that the number of DTAB patches adsorbed to the silicon wafer increased with a liquid flow. The change in the forces with a flow was therefore explained by this change in the DTAB adsorption to the negatively charged surfaces. As a liquid flow can change the charge of a surface, it may be possible to control the aggregation/dispersion of charged particles via the flow rate, if the appropriate surfactant type and concentration are used.

3.
Med Mol Morphol ; 53(4): 198-209, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32002664

RESUMEN

N-methyl-N-nitrosourea (MNU) is known to cause apoptosis of photoreceptor cells and changes in retinal pigment epithelium (RPE). However, the changes in choriocapillaris, which nourishes photoreceptor cells by diffusing tissue fluid through RPE, have not been reported in detail. Therefore, we studied the ultrastructural transformation in and around the choriocapillaris to characterize the interdependence between choriocapillaris and surrounding tissue components in a mouse model. Seven-week-old male C57BL/6 mice were given a single intraperitoneal injection of MNU (60 mg/kg of body weight). Perfusion-fixed eyeballs were examined chronologically using immunohistochemistry and electron microscopy until the photoreceptor cells were lost. Sequential ultrastructural changes were observed in photoreceptor cells, RPE, Bruch's membrane, choriocapillaris, and choroidal melanocytes after an MNU injection. The lumens of the choriocapillaris narrowed following dilation, and the vascular endothelium showed structural alterations. When the photoreceptor cells were completely lost, the choriocapillaris appeared to be in a recovery process. Our results suggest that transport abnormality through Bruch's membrane and structural changes in the choroid might have influenced the morphology of choriocapillaris. The thin wall of the choriocapillaris appears to be the cause of the vulnerability with its altered morphology.


Asunto(s)
Coroides/ultraestructura , Metilnitrosourea/toxicidad , Degeneración Retiniana/patología , Animales , Apoptosis/efectos de los fármacos , Coroides/efectos de los fármacos , Coroides/patología , Modelos Animales de Enfermedad , Humanos , Inyecciones Intraperitoneales , Masculino , Metilnitrosourea/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/patología , Células Fotorreceptoras de Vertebrados/ultraestructura , Degeneración Retiniana/inducido químicamente , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/ultraestructura
4.
Biochim Biophys Acta Mol Cell Res ; 1865(6): 874-888, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29567213

RESUMEN

Macrophages secrete endoplasmic reticulum aminopeptidase 1 (ERAP1) in response to lipopolysaccharide (LPS) and interferon (IFN)-γ to enhance their phagocytic and nitric oxide (NO) synthetic activities. In this study, we found that a subset of secreted ERAP1 bound to exosomes released from LPS/IFN-γ-treated murine RAW264.7 macrophages compared to untreated cells. ERAP1-bound exosomes enhanced phagocytic and NO synthetic activities of macrophages more efficiently than free ERAP1 and exosomes derived from untreated cells. Deletion of the exon 10 coding sequence in ERAP1 gene resulted in loss of binding to exosomes. By comparing the activities of exosomes derived from wild-type and ERAP1 gene-deficient RAW264.7 cells, we observed that ERAP1 contributed to the exosome-dependent phagocytosis and NO synthesis of the cells. Upon stimulation of RAW264.7 cells with LPS/IFN-γ, TNF-α, IFN-γ, and CCL3 were also associated with the released exosomes. Analyses of cytokine function revealed that while CCL3 in the exosomes was crucial to the phagocytic activity of RAW264.7 cells, TNF-α and IFN-γ primarily contributed to the enhancement of NO synthesis. These results suggest that treatment with LPS/IFN-γ alters the physicochemical properties of exosomes released from macrophages in order to facilitate association with ERAP1 and several cytokines/chemokines. This leads to exosome-mediated enhancement of macrophage functions. It is possible that packaging effector molecules into exosomes upon inflammatory stimuli, facilitates the exertion of effective pathophysiological functions on macrophages. Our data provide the first evidence that ERAP1 associated with exosomes plays important roles in inflammatory processes via activation of macrophages.


Asunto(s)
Aminopeptidasas/metabolismo , Exosomas/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Aminopeptidasas/genética , Animales , Citocinas/genética , Citocinas/metabolismo , Exosomas/genética , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Noqueados , Antígenos de Histocompatibilidad Menor/genética , Fagocitosis , Células RAW 264.7
5.
Am J Physiol Renal Physiol ; 317(5): F1359-F1374, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31566433

RESUMEN

The function of actin is regulated by various posttranslational modifications. We have previously shown that in the kidneys of nonobese type 2 diabetes model Goto-Kakizaki rats, increased O-GlcNAcylation of ß-actin protein is observed. It has also been reported that both O-GlcNAcylation and phosphorylation occur on Ser199 of ß-actin. However, their roles are not known. To elucidate their roles in diabetic nephropathy, we examined the rat kidney for changes in O-GlcNAcylation of Ser199 (gS199)-actin and in the phosphorylation of Ser199 (pS199)-actin. Both gS199- and pS199-actin molecules had an apparent molecular weight of 40 kDa and were localized as nonfilamentous actin in both the cytoplasm and nucleus. Compared with the normal kidney, the immunostaining intensity of gS199-actin increased in podocytes of the glomeruli and in proximal tubules of the diabetic kidney, whereas that of pS199-actin did not change in podocytes but decreased in proximal tubules. We confirmed that the same results could be observed in the glomeruli of the human diabetic kidney. In podocytes of glomeruli cultured in the presence of the O-GlcNAcase inhibitor Thiamet G, increased O-GlcNAcylation was accompanied by a concomitant decrease in the amount of filamentous actin and in morphological changes. Our present results demonstrate that dysregulation of O-GlcNAcylation and phosphorylation of Ser199 occurred in diabetes, which may contribute partially to the causes of the morphological changes in the glomeruli and tubules. gS199- and pS199-actin will thus be useful for the pathological evaluation of diabetic nephropathy.


Asunto(s)
Actinas/metabolismo , Nefropatías Diabéticas/metabolismo , Acilación , Secuencia de Aminoácidos , Animales , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas/patología , Humanos , Riñón/metabolismo , Riñón/patología , Masculino , Modelos Moleculares , Fosforilación , Podocitos/metabolismo , Conformación Proteica , Ratas , Ratas Endogámicas
6.
J Anat ; 232(2): 200-213, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29205342

RESUMEN

The mammalian liver has a structural and functional unit called the liver lobule, in the periphery of which the portal triad consisting of the portal vein, bile duct and hepatic artery is developed. This type of hepatic architecture is detectable in many other vertebrates, including amphibians and birds, whereas intrahepatic bile ducts run independently of portal vein distribution in actinopterygians such as the salmon and tilapia. It remains to be clarified how the hepatic architectures are phylogenetically developed among vertebrates. The present study morphologically and immunohistochemically analyzed the hepatic structures of various vertebrates, including as many classes and subclasses as possible, with reference to intrahepatic bile duct distribution. The livers of vertebrates belonging to the Agnatha, Chondrichthyes, Amphibia, Aves, Mammalia, and Actinopterygii before Elopomorpha, had the portal triad-type architecture. The Anguilliformes livers developed both periportal bile ducts and non-periportal bile ducts. The Otocephala and Euteleostei livers had independent configuration of bile ducts and portal veins. Pancreatic tissues penetrated the liver parenchyma along portal veins in the Euteleostei. The liver of the lungfish, which shares the same origin with amphibians, did not have the portal triad-type architecture. Teleostei and lungfish livers had ductular development in the liver parenchyma similar to oval cell proliferation in injured mammalian livers. Euteleostei livers had penetration of significant numbers of independent portal veins from their intestines, suggesting that each liver lobe might receive a different blood supply. The hepatic architectures of the portal triad-type changed to non-portal triad-type architecture along the evolution of the Actinopterygii. The hepatic architecture of the lungfish resembles that of the Actinopterygii after Elopomorpha in intrahepatic biliary configuration, which may be an example of convergent evolution.


Asunto(s)
Hígado/anatomía & histología , Vertebrados/anatomía & histología , Animales , Evolución Biológica , Filogenia
7.
Langmuir ; 34(29): 8464-8471, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29969037

RESUMEN

In spite of the fact that a flow is often present in the liquid in which charged particles are dispersed, the effect of a flow on the forces controlling the dispersion is not clear. Here, we used a combined atomic force microscope-peristaltic pump system to determine the effect of a flow in aqueous solutions between a negatively charged silica particle and a negatively charged silicon wafer on the forces in the system. The effect of a flow on the forces in water or aqueous solutions of NaCl or MgCl2·6H2O was studied for salt concentrations lower than the concentrations needed to invert the charge of the silica and silicon surfaces. This was done to prevent the formation of a reversed flow in the system due to a charge inversion of the silica surface. A flow was seen to decrease the intersurface repulsive forces, if the water contained salt (NaCl or MgCl2·6H2O). An increased bulk salt concentration was also seen to decrease the repulsive forces further in the presence of a liquid flow. The surface potentials and effective ionic concentrations of the systems were determined by comparing the experimental curves with the theoretically calculated ones. The surface potentials and effective ionic concentrations were seen to decrease and increase, respectively, as the flow rate and bulk salt concentrations were increased. This change was explained by the shrinking of the diffuse layers by the liquid flow, due to part of the diffuse layer being washed away by the flowing liquid.

8.
Glycobiology ; 27(3): 246-253, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28177462

RESUMEN

In this study, we examined the distribution of fucosylated glycans in mouse intestines using a lectin, BC2LCN (N-terminal domain of the lectin BC2L-C from Burkholderia cenocepacia), as a probe. BC2LCN is specific for glycans with a terminal Fucα1,2Galß1,3-motif and it is a useful marker for discriminating the undifferentiated status of human induced/embryonic stem cells. Apparent BC2LCN reactivity was detected in the secretory granules of goblet cells in the ileum but not those in the colon. We also found distinctive reactivity in the crypt bottom, which is known as the stem cell zone, of the colon and the ileum. Other lectins for fucosylated glycans, including Ulex europaeus agglutinin-I, Pholiota squarrosa lectin and Aleuria aurantia lectin, did not exhibit similar reactivity in the crypt bottom. Remarkably, BC2LCN-positive epithelial cells could be labeled with a niche cell marker, c-Kit/CD117. Overall, our results indicate that intestinal niche cells express distinct fucosylated glycans recognized by BC2LCN. Increasing evidence suggests that the self-renewal and proliferation of stem cells depend on specific signals derived from niche cells. Our results highlight novel molecular properties of intestinal niche cells in terms of their glycosylation, which may help to understand the regulation of intestinal stem cells. The distinct expression of glycans may reflect the functional roles of niche cells. BC2LCN is a valuable tool for investigating the functional significance of protein glycosylation in stem cell regulation.


Asunto(s)
Linaje de la Célula/genética , Lectinas/química , Polisacáridos/aislamiento & purificación , Proteínas Proto-Oncogénicas c-kit/metabolismo , Animales , Burkholderia cenocepacia/química , Colon/química , Colon/citología , Células Caliciformes/química , Células Caliciformes/metabolismo , Íleon/química , Íleon/citología , Ratones , Células Madre Embrionarias de Ratones/química , Células Madre Embrionarias de Ratones/metabolismo , Polisacáridos/química , Polisacáridos/genética , Proteínas Proto-Oncogénicas c-kit/aislamiento & purificación , Nicho de Células Madre/genética
9.
Am J Physiol Renal Physiol ; 312(4): F702-F715, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28148530

RESUMEN

Unbiased transcriptome profiling and functional genomics approaches have identified ubiquitin-specific protease 40 (USP40) as a highly specific glomerular transcript. This gene product remains uncharacterized, and its biological function is completely unknown. Here, we showed that mouse and rat glomeruli exhibit specific expression of the USP40 protein, which migrated at 150 kDa and was exclusively localized in the podocyte cytoplasm of the adult kidney. Double-labeling immunofluorescence staining and confocal microscopy analysis of fetal and neonate kidney samples revealed that USP40 was also expressed in the vasculature, including in glomerular endothelial cells at the premature stage. USP40 in cultured glomerular endothelial cells and podocytes was specifically localized to the intermediate filament protein nestin. In glomerular endothelial cells, immunoprecipitation confirmed actual protein-protein binding of USP40 with nestin, and USP40-small-interfering RNA transfection revealed significant reduction of nestin. In a rat model of minimal-change nephrotic syndrome, USP40 expression was apparently reduced, which was also associated with the reduction of nestin. Zebrafish morphants lacking Usp40 exhibited disorganized glomeruli with the reduction of the cell junction in the endothelium and foot process effacement in the podocytes. Permeability studies in these zebrafish morphants demonstrated a disruption of the selective glomerular permeability filter. These data indicate that USP40/Usp40 is a novel protein that might play a crucial role in glomerulogenesis and the glomerular integrity after birth through the modulation of intermediate filament protein homeostasis.


Asunto(s)
Tasa de Filtración Glomerular , Glomérulos Renales/enzimología , Ubiquitina Tiolesterasa/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Endoteliales/enzimología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genotipo , Células HEK293 , Humanos , Glomérulos Renales/embriología , Glomérulos Renales/patología , Glomérulos Renales/fisiopatología , Ratones , Nefrosis Lipoidea/enzimología , Nefrosis Lipoidea/genética , Nefrosis Lipoidea/fisiopatología , Nestina/metabolismo , Permeabilidad , Fenotipo , Podocitos/enzimología , Interferencia de ARN , Ratas , Transfección , Ubiquitina Tiolesterasa/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Anesth Analg ; 125(3): 874-883, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28504989

RESUMEN

BACKGROUND: The endothelial surface layer (ESL) regulates vascular permeability to maintain fluid homeostasis. The glycocalyx (GCX), which has a complex and fragile ultrastructure, is an important component of the ESL. Abnormalities of the GCX have been hypothesized to trigger pathological hyperpermeability. Here, we report an integrated in vivo analysis of the morphological and functional properties of the GCX in a vital organ. METHODS: We examined the behavior of the ESL and GCX, using both electron microscopy (EM) and intravital microscopy (IVM). We also compared morphological changes in the ESL of mouse skin in a glycosidase-treated and control group. Combined approaches were also used to examine both morphology and function in a lipopolysaccharide-induced septic model and the pathophysiological features of leukocyte-endothelial interactions and in vivo vascular permeability. RESULTS: Using IVM, we identified an illuminated part of the ESL as the GCX and confirmed our observation using morphological and biochemical means. In septic mice, we found that the GCX was thinner than in nonseptic controls in both an EM image analysis (0.98 ± 2.08 nm vs 70.68 ± 36.36 nm, P< .001) and an IVM image analysis (0.36 ± 0.15 µm vs 1.07 ± 0.39 µm, P< .001). Under septic conditions, syndecan-1, a representative core protein of the GCX, was released into the blood serum at a higher rate in septic animals (7.33 ± 3.46 ng/mL) when compared with controls (below the limit of detection, P< .001). Significant increases in leukocyte-endothelial interactions, defined as the numbers of rolling or firm-sticking leukocytes, and molecular hyperpermeability to the interstitium were also observed after GCX shedding in vivo. CONCLUSIONS: Using IVM, we visualized an illuminated part of the ESL layer that was subsequently confirmed as the GCX using EM. Severe sepsis induced morphological degradation of the GCX, accompanied by shedding of the syndecan-1 core protein and an increase in leukocyte-endothelial interactions affecting the vascular permeability. Our in vivo model describes a new approach to deciphering the relationship between structural and functional behaviors of the GCX.


Asunto(s)
Endotelio/patología , Endotelio/ultraestructura , Glicocálix/patología , Glicocálix/ultraestructura , Microscopía Intravital/métodos , Sepsis/patología , Animales , Permeabilidad Capilar/fisiología , Endotelio/metabolismo , Glicocálix/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica , Microscopía Fluorescente/métodos , Sepsis/metabolismo
11.
Biol Pharm Bull ; 40(8): 1183-1191, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28768999

RESUMEN

Exosomes are derived from various sources, including primary and cultured cell lines and body fluids. It is now evident that they are important for communication between cells. They have, therefore, been proposed as potential carriers to deliver drugs to specific sites. In this study, we examined stability of exosomes derived from human saliva. Exosomes were stored at 4°C for up to 20 months and their membrane integrity assessed. Several exosomal markers, such as dipeptidyl peptidase IV (DPP IV; membrane marker) and programmed cell death 6-interacting protein (Alix, lumen marker), were retained intact after 20 months storage at 4°C. Moreover, intact exosomes could be isolated from whole saliva that had been stored at 4°C. Membrane disruption with detergents such as Triton X-100 and Nonidet P-40 caused partial solubilization of DPP IV and release of Alix into the supernatant. In contrast, sodium dodecyl sulfate treatment caused a complete disruption of the membrane. In addition, membrane stability was maintained after freezing and thawing. These results indicated that human saliva-derived exosomes are stable, maintaining their membrane integrity over a long storage period.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Exosomas/metabolismo , Saliva/citología , Adulto , Membrana Celular/efectos de los fármacos , Frío , Detergentes/farmacología , Exosomas/efectos de los fármacos , Humanos , Persona de Mediana Edad , Octoxinol/farmacología , Polietilenglicoles/farmacología , Adulto Joven
12.
J Bacteriol ; 198(2): 343-51, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26527639

RESUMEN

UNLABELLED: Bordetella pertussis is a bacterium that is considered to be highly adapted to humans, and it has not been isolated from the environment. As this bacterium does not utilize sugars, the abundant supply of glutamate in Stainer Scholte (SS) medium enables B. pertussis to grow efficiently in liquid culture in vitro, and as such, SS medium is a popular choice for laboratory experiments. However, the concentration of glutamate in the in vivo niche of B. pertussis is quite low. We investigated the bacterial response to low concentrations of glutamate to elucidate bacterial physiology via the expression of the type 3 secretion system (T3SS), and we discuss its relationship to the Bvg mode in which the two-component regulator of pathogenesis (BvgAS) is activated. Glutamate limitation induced the expression of both the T3SS apparatus and effector genes at the transcriptional level. (p)ppGpp, a modulator of the stringent response, was necessary for maximum expression of the T3SS genes. These observations indicate that the expression of the T3SS is managed by nutrient starvation. In addition, the autoaggregation ability was high in the absence of glutamate and no autoaggregation was observed in glutamate-replete medium. Taken together, glutamate-limited conditions in Bvg(+) mode elicit the high expression of T3SS genes in B. pertussis and promotes its sessile form. IMPORTANCE: Bordetella pertussis is a highly contagious pathogen that causes respiratory infectious disease. In spite of the increasing use of vaccination, the number of patients with pertussis is increasing. The proteins produced in vivo often are different from the protein profile under laboratory conditions; therefore, the development of conditions reflecting the host environment is important to understand native bacterial behavior. In the present study, we examined the effect of glutamate limitation, as its concentration in vivo is much lower than that in the culture medium currently used for B. pertussis experiments. As predicted, the T3SS was induced by glutamate limitation. These results are suggestive of the importance of regulation by nutrient conditions and in the pathogenicity of B. pertussis.


Asunto(s)
Bordetella pertussis/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Ácido Glutámico/metabolismo , Guanosina Pentafosfato/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bordetella pertussis/genética , Sistemas de Secreción Tipo III/genética
13.
Development ; 140(3): 639-48, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23293295

RESUMEN

Congenital biliary atresia is an incurable disease of newborn infants, of unknown genetic causes, that results in congenital deformation of the gallbladder and biliary duct system. Here, we show that during mouse organogenesis, insufficient SOX17 expression in the gallbladder and bile duct epithelia results in congenital biliary atresia and subsequent acute 'embryonic hepatitis', leading to perinatal death in ~95% of the Sox17 heterozygote neonates in C57BL/6 (B6) background mice. During gallbladder and bile duct development, Sox17 was expressed at the distal edge of the gallbladder primordium. In the Sox17(+/-) B6 embryos, gallbladder epithelia were hypoplastic, and some were detached from the luminal wall, leading to bile duct stenosis or atresia. The shredding of the gallbladder epithelia is probably caused by cell-autonomous defects in proliferation and maintenance of the Sox17(+/-) gallbladder/bile duct epithelia. Our results suggest that Sox17 plays a dosage-dependent function in the morphogenesis and maturation of gallbladder and bile duct epithelia during the late-organogenic stages, highlighting a novel entry point to the understanding of the etiology and pathogenesis of human congenital biliary atresia.


Asunto(s)
Atresia Biliar/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/metabolismo , Haploinsuficiencia , Factores de Transcripción SOXF/metabolismo , Animales , Animales Recién Nacidos , Conductos Biliares/metabolismo , Conductos Biliares/patología , Atresia Biliar/patología , Proliferación Celular , Colestasis/genética , Colestasis/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Estrés del Retículo Endoplásmico , Epitelio/metabolismo , Epitelio/patología , Femenino , Vesícula Biliar/metabolismo , Vesícula Biliar/ultraestructura , Proteínas HMGB/genética , Hepatitis Animal/genética , Hepatitis Animal/metabolismo , Hepatitis Animal/patología , Hepatocitos/metabolismo , Heterocigoto , Inmunohistoquímica , Hígado/metabolismo , Hígado/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Embarazo , Factores de Transcripción SOXF/genética , Factores de Tiempo
14.
Arch Biochem Biophys ; 605: 86-94, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-26827730

RESUMEN

Low-temperature plasma is useful for the care of wounded skin. It accelerates wound healing. However, the mechanism of this effect has not been fully elucidated yet. Galectin-1 is reported to accelerate wound healing via the Smad signaling pathway. In the present study to clarify whether or not galectins were expressed during the process of wound healing in the plasma-treated skin, we examined the effect of low-temperature plasma on galectin expression in the healing skin. We compared the effects of low-temperature plasma on the expression of galectin-1, -2, and -3 in the healing skin with those of electrocoagulation conducted with a high-frequency electrical coagulator. Immediately after the start of low-temperature plasma treatment following the incision made in the skin, a membrane-like structure was formed on the surface of the wound. Immunoelectron microscopy showed that these galectins were localized in the membrane-like structure of the plasma-treated skin. The expressions of these galectins were increased by the low-temperature plasma treatment, whereas they were inhibited by the electrocoagulation. These results suggest that galectins were involved in the wound healing of low-temperature plasma-treated skin. Galectins will thus be good markers for further examination of the effects of low-temperature plasma on the healing of wounded skin.


Asunto(s)
Galectina 1/metabolismo , Galectina 2/metabolismo , Galectina 3/metabolismo , Gases em Plasma/uso terapéutico , Cicatrización de Heridas , Animales , Frío , Electrocoagulación , Femenino , Regulación de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Transducción de Señal , Piel/metabolismo , Piel/patología , Proteínas Smad/metabolismo
15.
Eur J Oral Sci ; 124(1): 68-74, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26715398

RESUMEN

This study evaluated the inhibition of matrix metalloproteases (MMPs) and cellular responses elicited by gold (Au) and platinum (Pt) nanoparticles (NPs). The interaction of MMP-1 and NPs was evaluated using an MMP assay kit. The cultured L929 cells were exposed to various concentrations of NPs. The cellular responses to NPs were examined using a cytotoxicity assay (that evaluated cell viability and lactic dehydrogenase production), real-time polymerase chain reaction (RT-qPCR), and transmission electron microscopy. Both types of NPs, when used at concentrations above 10 µg ml(-1), inhibited MMP-1 activity. No cytotoxic effects were found when the cells were exposed to AuNPs. In contrast, PtNPs, at both 100 and 400 µg ml(-1), induced cytotoxicity. No inflammatory responses (production of interleukin-6 and tumor necrosis factor-alpha) to NPs were identified by RT-qPCR. The negative surface charge of NPs (COOH(-)) binds to the Zn(2+) of the MMP active center by chelation, leading to MMP inhibition. Gold nanoparticles are plausible candidates for MMP inhibitors in resin-bonding materials because they effectively inhibit MMP-1 activity without cytotoxic or inflammatory effects.


Asunto(s)
Nanopartículas , Línea Celular , Fibroblastos , Oro , Metaloproteinasas de la Matriz , Platino (Metal)
16.
Clin Exp Nephrol ; 19(3): 403-10, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24985965

RESUMEN

BACKGROUND: Gangliosides are amphipathic lipids ubiquitously expressed in all vertebrate cells. They have been reported to play pivotal roles in cell morphology, cell adhesion, signal transduction, and modulation of immune reaction. Although human kidney contains various kinds of ganglioside, their physiological and pathophysiological roles have not been elucidated yet. As ganglioside GM3 is the most abundant ganglioside in human kidney, we tried to reveal the distribution of GM3 using histological analysis. METHODS: Macroscopically normal parts of operatively resected kidney from renal cell carcinoma patients were used for analyses. Immunohistochemical and immunoelectron microscopic analyses were performed with anti-GM3 antibody. RESULTS: Immunohistochemical analyses showed that GM3 was observed in glomeruli and renal proximal tubules. Immunoelectron microscopy demonstrated that GM3 was localized on the foot process of podocyte and also in Golgi region of renal proximal tubule cells. CONCLUSIONS: Ganglioside GM3 might take a part of the negative electric charge on the surface of podocyte and its multiple physiological actions may play pivotal roles for maintaining glomerular function.


Asunto(s)
Gangliósido G(M3)/análisis , Glomérulos Renales/química , Túbulos Renales Proximales/química , Podocitos/química , Anciano , Femenino , Aparato de Golgi/química , Humanos , Inmunohistoquímica , Masculino , Microscopía Inmunoelectrónica , Persona de Mediana Edad
17.
J Am Soc Nephrol ; 25(7): 1523-32, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24511122

RESUMEN

Stimulation of renal proximal tubule (PT) transport by angiotensin II (Ang II) is critical for regulation of BP. Notably, in rats, mice, and rabbits, the regulation of PT sodium transport by Ang II is biphasic: transport is stimulated by picomolar to nanomolar concentrations of Ang II but inhibited by nanomolar to micromolar concentrations of Ang II. However, little is known about the effects of Ang II on human PT transport. By functional analysis with isolated PTs obtained from nephrectomy surgery, we found that Ang II induces a dose-dependent profound stimulation of human PT transport by type 1 Ang II receptor (AT1)-dependent phosphorylation of extracellular signal-regulated kinase (ERK). In PTs of wild-type mice, the nitric oxide (NO) /cGMP/cGMP-dependent kinase II (cGKII) pathway mediated the inhibitory effect of Ang II. In PTs of cGKII-deficient mice, the inhibitory effect of Ang II was lost, but activation of the NO/cGMP pathway failed to phosphorylate ERK. Conversely, in human PTs, the NO/cGMP pathway mediated the stimulatory effect of Ang II by phosphorylating ERK independently of cGKII. These contrasting responses to the NO/cGMP pathway may largely explain the different modes of PT transport regulation by Ang II, and the unopposed marked stimulation of PT transport by high intrarenal concentrations of Ang II may be an important factor in the pathogenesis of human hypertension. Additionally, the previously unrecognized stimulatory effect of the NO/cGMP pathway on PT transport may represent a human-specific therapeutic target in hypertension.


Asunto(s)
Angiotensina II/administración & dosificación , Angiotensina II/fisiología , GMP Cíclico/fisiología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Óxido Nítrico/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Técnicas In Vitro
18.
Circulation ; 127(7): 842-53, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23355623

RESUMEN

BACKGROUND: Revealing the mechanisms underlying the functional integrity of the vascular system could make available novel therapeutic approaches. We previously showed that knocking out the widely expressed peptide adrenomedullin (AM) or receptor activity-modifying protein 2 (RAMP2), an AM-receptor accessory protein, causes vascular abnormalities and is embryonically lethal. Our aim was to investigate the function of the vascular AM-RAMP2 system directly. METHODS AND RESULTS: We generated endothelial cell-specific RAMP2 and AM knockout mice (E-RAMP2(-/-) and E-AM(-/-)). Most E-RAMP2(-/-) mice died perinatally. In surviving adults, vasculitis occurred spontaneously. With aging, E-RAMP2(-/-) mice showed severe organ fibrosis with marked oxidative stress and accelerated vascular senescence. Later, liver cirrhosis, cardiac fibrosis, and hydronephrosis developed. We next used a line of drug-inducible E-RAMP2(-/-) mice (DI-E-RAMP2(-/-)) to induce RAMP2 deletion in adults, which enabled us to analyze the initial causes of the aforementioned vascular and organ damage. Early after the induction, pronounced edema with enhanced vascular leakage occurred. In vitro analysis revealed the vascular leakage to be caused by actin disarrangement and detachment of endothelial cells. We found that the AM-RAMP2 system regulates the Rac1-GTP/RhoA-GTP ratio and cortical actin formation and that a defect in this system causes the disruption of actin formation, leading to vascular and organ damage at the chronic stage after the gene deletion. CONCLUSIONS: Our findings show that the AM-RAMP2 system is a key determinant of vascular integrity and homeostasis from prenatal stages through adulthood. Furthermore, our models demonstrate how endothelial cells regulate vascular integrity and how their dysregulation leads to organ damage.


Asunto(s)
Adrenomedulina/metabolismo , Arteriosclerosis/metabolismo , Endotelio Vascular/metabolismo , Homeostasis/fisiología , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , Factores de Edad , Envejecimiento/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Arteriosclerosis/patología , Arteriosclerosis/fisiopatología , Cadherinas/genética , Cadherinas/metabolismo , Modelos Animales de Enfermedad , Edema/metabolismo , Edema/patología , Edema/fisiopatología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Fibrosis/metabolismo , Fibrosis/patología , Fibrosis/fisiopatología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/fisiopatología , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Leucocitos/metabolismo , Ratones , Ratones Noqueados , Estrés Oxidativo/fisiología , Proteína 2 Modificadora de la Actividad de Receptores/genética , Vasculitis/metabolismo , Vasculitis/patología , Vasculitis/fisiopatología
19.
Microbiology (Reading) ; 159(Pt 7): 1379-1389, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23676431

RESUMEN

Bordetella pertussis, the causative agent of whooping cough, is highly adapted to cause human infection. The production of virulence factors, such as adhesins and toxins, is just part of an array of mechanisms by which B. pertussis causes infection. The stringent response is a global bacterial response to nutritional limitation that is mediated by the accumulation of cellular ppGpp and pppGpp [termed together as (p)ppGpp]. Here, we demonstrate that production of (p)ppGpp was controlled by RelA and SpoT proteins in B. pertussis, and that mutation-induced loss of both proteins together caused deficiencies in (p)ppGpp production. The (p)ppGpp-deficient mutants also exhibited defects in growth regulation, decreases in viability under nutritionally limited conditions, increases in susceptibility to oxidative stress and defects in biofilm formation. Analysis of the secreted proteins and the respective transcripts showed that lack of (p)ppGpp led to decreased expression of fim3 and bsp22, which encode a fimbrial subunit and the self-polymerizing type III secretion system tip protein, respectively. Moreover, electron microscopic analysis also indicated that (p)ppGpp regulated the formation of filamentous structures. Most virulence genes - including fim3 and bsp22 - were expressed in the Bvg(+) phase during which the BvgAS two-component system was activated. Although fim3 and bsp22 were downregulated in a (p)ppGpp-deficient mutant, normal expression of fhaB, cyaA and ptxA persisted. Lack of coherence between virulence gene expression and (p)ppGpp production indicated that (p)ppGpp did not modulate the Bvg phase. Taken together, our data indicate that (p)ppGpp may govern an as-yet-unrecognized system that influences B. pertussis pathogenicity.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Bordetella pertussis/patogenicidad , Fimbrias Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bordetella pertussis/genética , Fimbrias Bacterianas/genética , Eliminación de Gen , Humanos , Ligasas/genética , Ligasas/metabolismo , Mutación , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Virulencia , Factores de Virulencia
20.
Biol Reprod ; 88(5): 116, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23536370

RESUMEN

Perinatal estrogen exposure elicits a wide range of abnormalities in the female genital tract. Since angiogenesis is essential for morphogenesis, we investigated the vascular density, integrity of vasculatures, and expression of angiogenic factors and their receptors in the uteri of mice treated with diethylstilbestrol (DES) neonatally (DES-mice); the uteri were collected from Day 4 to Day 20. DES treatment reduced the number and density of vasculatures immunostained with PECAM1 (platelet and endothelial cell adhesion molecule 1) in the stroma. Horseradish peroxidase injected into the left ventricle leaked into the endometrium and myometrium on Day 10 in the DES-mice but not in the controls. Electron microscopy confirmed the immaturity of the capillaries, which had an incomplete basal lamina and fewer pericytes. Immunohistochemical studies demonstrated that VEGFA (vascular endothelial growth factor A) expression and ANGPT1 (angiopoietin 1) expression were down-regulated in the stromal cells until Days 20 and 10, respectively. The number of vasculatures with ANGPT2 immunoreaction was reduced in the DES-mice. DES treatment suppressed the expression of VEGFR2 (VEGF receptor 2) and the co-receptor NRP1 (neuropilin 1) as well as TEI2 in the vasculatures. The results of RT-PCR and Western blotting supported the down-regulation of the expression of angiogenic factors and their receptors in DES-mice, whereas the VEGFR1 protein expression was up-regulated. These results suggested that the low concentration of angiogenic factors in the stroma was primarily responsible for the low vascular density in the stroma of the DES-mice, and that the low vascular density and immature vasculatures resulted in uterine malformations.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Dietilestilbestrol/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Útero/efectos de los fármacos , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Animales , Regulación hacia Abajo/efectos de los fármacos , Femenino , Ratones , Neuropilina-1/genética , Neuropilina-1/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Útero/irrigación sanguínea , Útero/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA