Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Mol Divers ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780832

RESUMEN

Pseudomonas aeruginosa can cause serious nosocomial infections. Targeting the biosynthesis of Lipid A, a major structural domain of lipopolysaccharide (LPS) in P. aeruginosa has emerged as a valuable strategy for developing novel therapeutic agents. The biosynthesis of Lipid A involves the activation of homolog enzymes including LpxA and LpxD. LpxA enzyme facilitates the transfer of R-3-hydroxydecanoic fatty acid to uridine diphosphate N-acetylglucosamine in the first step. While LPxD is accountable in third step, wherein R-3-hydroxydodecanoate is transferred to the 2' amine of UDP-3-O-(3-hydroxydecanoyl) utilizing an ACP donor. The exploration of LpxA and LpxD has been largely neglected, as no specific small-molecule inhibitors have been identified, thus far, except for peptide inhibitors. Here, we report the identification of potential dual inhibitors of the lipid A biosynthesis pathway that target both the LpxA and LpxD enzymes as novel antibiotic agents. Among the virtually screened 32,000 marine bioactive compounds Oscillatoxin A, NCI60_041046, and LTS0192263 exhibited optimal docking interactions with LpxA and LpxD, respectively. MD simulation and MMPBSA data showcased stable interactions between selected marine products and LpxA/LpxD. FMO analysis showed that Oscillatoxin A and NCI60_041046 are the most chemically active molecules. MEP analysis data highlighted the possible electrophilic and nucleophilic distribution zones present in the structure. In addition, these bioactive molecules showed acceptable ADMET profiles. These data confirmed that Oscillatoxin A, NCI60_041046, and LTS0192263 could serve as seeds for the development of potential therapeutics to combat P. aeruginosa infection.

2.
Mar Drugs ; 22(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38921580

RESUMEN

SeviL, a galactoside-binding lectin previously isolated from the mussel Mytilisepta virgata, was demonstrated to trigger apoptosis in HeLa ovarian cancer cells. Here, we show that this lectin can promote the polarization of macrophage cell lines toward an M1 functional phenotype at low concentrations. The administration of SeviL to monocyte and basophil cell lines reduced their growth in a dose-dependent manner. However, low lectin concentrations induced proliferation in the RAW264.7 macrophage cell line, which was supported by the significant up-regulation of TOM22, a component of the mitochondrial outer membrane. Furthermore, the morphology of lectin-treated macrophage cells markedly changed, shifting from a spherical to an elongated shape. The ability of SeviL to induce the polarization of RAW264.7 cells to M1 macrophages at low concentrations is supported by the secretion of proinflammatory cytokines and chemokines, as well as by the enhancement in the expression of IL-6- and TNF-α-encoding mRNAs, both of which encode inflammatory molecular markers. Moreover, we also observed a number of accessory molecular alterations, such as the activation of MAP kinases and the JAK/STAT pathway and the phosphorylation of platelet-derived growth factor receptor-α, which altogether support the functional reprogramming of RAW264.7 following SeviL treatment. These results indicate that this mussel ß-trefoil lectin has a concentration-dependent multifunctional role in regulating cell proliferation, phenotype, and death in macrophages, suggesting its possible involvement in regulating hemocyte activity in vivo.


Asunto(s)
Bivalvos , Lectinas , Macrófagos , Animales , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Lectinas/farmacología , Proliferación Celular/efectos de los fármacos , Humanos , Citocinas/metabolismo , Fenotipo , Transducción de Señal/efectos de los fármacos
3.
Chem Biodivers ; : e202400932, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949892

RESUMEN

Carbohydrate derivatives play a crucial role in biochemical and medicinal research. Therefore, the present study was designed to explore the synthesis of methyl α-D-glucopyranoside derivatives (1, MDG), focusing on their efficacy against bacterial and fungal infections. The structure of the synthesized compounds was ascertained using spectral and elemental analyses. Antimicrobial screening revealed strong antifungal properties and exhibited MIC values of 16-32 µg/L and MBC 64-128 µg/L. Structure-activity relationship (SAR) analysis indicated that adding nonanoyl and decanoyl groups to ribose moiety enhanced potency against both bacterial and fungal strains. Compounds 6 and 7, presented nonanoyl and decanoyl substituents and demonstrated greater efficacy. In addition, DFT studies identified compound 8 as possessing ideal electronic properties. Molecular docking revealed that compound 8 exhibits exceptional binding affinities to bacterial proteins, conferring potent antibacterial and antifungal activities. In addition, pharmacokinetic optimization via POM analysis highlighted compounds 1 and 2 as promising bioavailable drugs with minimal toxicity. Molecular dynamics simulations confirmed the stability of the 2-S. aureus complex, revealing the therapeutic potential of compounds 2 and 8. The integration of in vitro and in silico methods, including DFT anchoring dynamics and molecular dynamics simulations, provides a solid framework for the advancement of effective anti-infective drugs.

4.
J Asian Nat Prod Res ; 26(8): 955-992, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38647682

RESUMEN

KRAS mutations linked with cancer. Flavonoids were docked against KRAS G12C and G12D receptors. Abyssinone III, alpha naphthoflavone, beta naphthoflavone, abyssinone I, abyssinone II and beta naphthoflavone, genistin, daidzin showed good docking scores against KRAS G12C and G12D receptors, respectively. The MD simulation data revealed that Rg, RMSD, RMSF, and SASA values were within acceptable limits. Alpha and beta naphthoflavone showed good binding energies with KRAS G12C and G12D receptors. DFT and MEP analysis highlighted the nucleophilic and electrophilic zones of best-docked flavonoids. A novel avenue for the control of KRAS G12C and G12D mutations is made possible by flavonoids.


In the present study, we computationally established the role of flavonoids as KRAS G12C and G12D inhibitors.Initially we selected 93 flavonoids and docked against 8AFB (KRAS G12C) and 7RT1 (KRAS G12D) using Sotorasib and MRTX 1133 as standards.A 100 ns MD simulation revealed that the radius of gyration, RMSD, RMSF, and SASA values were within acceptable limits and that there were a greater number of donors and acceptors for hydrogen bonds.In addition to the KRAS G12C 8AFB receptor, the maximum binding energy was shown by alpha Naphthoflavone (−26.471 kJ/mol), and for the KRAS G12D 7RT1 receptor, the maximum binding energy was shown by beta Naphthoflavone (−15.433 kJ/mol).FMO and MEP analysis data highlighted the best-docked flavonoids' potential areas for nucleophilic and electrophilic attacks.ADMET properties have been calculated and provide safe use and low toxicity for both aquatic and non-aquatic species.


Asunto(s)
Flavonoides , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas p21(ras) , Flavonoides/química , Flavonoides/farmacología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Estructura Molecular , Humanos , Teoría Funcional de la Densidad , Mutación
5.
Saudi Pharm J ; 32(6): 102093, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38737807

RESUMEN

Carbohydrate analogs are an important, well-established class of clinically useful medicinal agents that exhibit potent antimicrobial activity. Thus, we explored the various therapeutic potential of methyl α-D-mannopyranoside (MαDM) analogs, including their ability to synthesize and assess their antibacterial, antifungal, and anticancer properties; additionally, molecular docking, molecular dynamics simulation, and ADMET analysis were performed. The structure of the synthesized MαDM analogs was ascertained by spectroscopic techniques and physicochemical and elemental analysis. In vitro antimicrobial activity was assessed and revealed significant inhibitory effects, particularly against gram-negative bacteria along with the prediction of activity spectra for substances (PASS). Concurrently, MαDM analogs showed good results against antifungal pathogens and exhibited promising anticancer effects in vitro, demonstrating dose-dependent cytotoxicity against Ehrlich ascites carcinoma (EAC) cancer cells while sparing normal cells from compound 5, with an IC50 of 4511.65 µg/mL according to the MTT colorimetric assay. A structure-activity relationship (SAR) study revealed that hexose combined with the acyl chains of decanoyl (C-10) and benzenesulfonyl (C6H5SO2-) had synergistic effects on the bacteria and fungi that were examined. Molecular docking was performed against the Escherichia coli (6KZV) and Candida albicans (1EAG) proteins to acquire insights into the molecular interactions underlying the observed biological activities. The docking results were further supported by 100 ns molecular dynamics simulations, which provided a dynamic view of the stability and flexibility of complexes involving MαDM and its targets. In addition, ADMET analysis was used to evaluate the toxicological and pharmacokinetic profiles. Owing to their promising drug-like properties, these MαDM analogs exhibit potential as prospective therapeutic candidates for future development.

6.
Saudi Pharm J ; 32(5): 102062, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38601975

RESUMEN

This research describes the synthesis by an environmentally-friendly method, microwave irradiation, development and analysis of three novel and one previously identified Schiff base derivative as a potential inhibitor of bovine xanthine oxidase (BXO), a key enzyme implicated in the progression of gout. Meticulous experimentation revealed that these compounds (10, 9, 4, and 7) have noteworthy inhibitory effects on BXO, with IC50 values ranging from 149.56 µM to 263.60 µM, indicating their good efficacy compared to that of the standard control. The validation of these results was further enhanced through comprehensive in silico studies, which revealed the pivotal interactions between the inhibitors and the catalytic sites of BXO, with a particular emphasis on the imine group (-C = N-) functionalities. Intriguingly, the compounds exhibiting the highest inhibition rates also showcase advantageous ADMET profiles, alongside encouraging initial assessments via PASS, hinting at their broad-spectrum potential. The implications of these findings are profound, suggesting that these Schiff base derivatives not only offer a new vantage point for the inhibition of BXO but also hold considerable promise as innovative therapeutic agents in the management and treatment of gout, marking a significant leap forward in the quest for more effective gout interventions.

7.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446713

RESUMEN

The RAS gene family is one of the most frequently mutated oncogenes in human cancers. In KRAS, mutations of G12D and G12C are common. Here, 52 iridoids were selected and docked against 8AFB (KRAS G12C receptor) using Sotorasib as the standard. As per the docking interaction data, 6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester (dock score: -9.9 kcal/mol), 6'-O-trans-para-coumaroyl geniposidic acid (dock score: -9.6 kcal/mol), 6-O-trans-cinnamoyl-secologanoside (dock score: -9.5 kcal/mol), Loganic acid 6'-O-beta-d-glucoside (dock score: -9.5 kcal/mol), 10-O-succinoylgeniposide (dock score: -9.4), Loganic acid (dock score: -9.4 kcal/mol), and Amphicoside (dock score: -9.2 kcal/mol) showed higher dock scores than standard Sotorasib (dock score: -9.1 kcal/mol). These common amino acid residues between iridoids and complexed ligands confirmed that all the iridoids perfectly docked within the receptor's active site. The 100 ns MD simulation data showed that RMSD, RMSF, radius of gyration, and SASA values were within range, with greater numbers of hydrogen bond donors and acceptors. MM/PBSA analysis showed maximum binding energy values of -7309 kJ/mol for 6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester. FMO analysis showed that 6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester was the most likely chemically reactive molecule. MEP analysis data highlighted the possible electrophilic and nucleophilic attack regions of the best-docked iridoids. Of all the best-docked iridoids, Loganic acid passed Lipinski, Pfizer, and GSK filters with a similar toxicity profile to Sotorasib. Thus, if we consider these iridoids to be KRAS G12C inhibitors, they will be a boon to mankind.


Asunto(s)
Genes ras , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas p21(ras)/genética , Electricidad Estática , Simulación de Dinámica Molecular , Iridoides/farmacología , Iridoides/química , Ésteres
8.
Molecules ; 28(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37764457

RESUMEN

Influenza represents a profoundly transmissible viral ailment primarily afflicting the respiratory system. Neuraminidase inhibitors constitute a class of antiviral therapeutics employed in the management of influenza. These inhibitors impede the liberation of the viral neuraminidase protein, thereby impeding viral dissemination from the infected cell to host cells. As such, neuraminidase has emerged as a pivotal target for mitigating influenza and its associated complications. Here, we apply a de novo hybridization approach based on a breed-centric methodology to elucidate novel neuraminidase inhibitors. The breed technique amalgamates established ligand frameworks with the shared target, neuraminidase, resulting in innovative inhibitor constructs. Molecular docking analysis revealed that the seven synthesized breed molecules (designated Breeds 1-7) formed more robust complexes with the neuraminidase receptor than conventional clinical neuraminidase inhibitors such as zanamivir, oseltamivir, and peramivir. Pharmacokinetic evaluations of the seven breed molecules (Breeds 1-7) demonstrated favorable bioavailability and optimal permeability, all falling within the specified parameters for human application. Molecular dynamics simulations spanning 100 nanoseconds corroborated the stability of these breed molecules within the active site of neuraminidase, shedding light on their structural dynamics. Binding energy assessments, which were conducted through MM-PBSA analysis, substantiated the enduring complexes formed by the seven types of molecules and the neuraminidase receptor. Last, the investigation employed a reaction-based enumeration technique to ascertain the synthetic pathways for the synthesis of the seven breed molecules.


Asunto(s)
Depresores del Sistema Nervioso Central , Gripe Humana , Humanos , Neuraminidasa/genética , Gripe Humana/tratamiento farmacológico , Gripe Humana/genética , Simulación del Acoplamiento Molecular , Hibridación Genética , Antivirales/farmacología , Inhibidores Enzimáticos/farmacología
9.
Molecules ; 28(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38138491

RESUMEN

The pursuit of innovative combinations for the development of novel antimicrobial and antiviral medications has garnered worldwide interest among scientists in recent times. Monosaccharides and their glycosides, such as methyl α-d-mannopyranoside derivatives, play a significant role in the potential treatment of viral respiratory pathologies. This study was undertaken to investigate and assess the synthesis and spectral characterization of methyl α-d-mannopyranoside derivatives 2-6, incorporating various aliphatic and aromatic groups. The investigation encompassed comprehensive in vitro antimicrobial screening, examination of physicochemical properties, molecular docking analysis, molecular dynamics simulations, and pharmacokinetic predictions. A unimolar one-step cinnamoylation reaction was employed under controlled conditions to produce methyl 6-O-cinnamoyl-α-d-mannopyranoside 2, demonstrating selectivity at the C-6 position. This represented a pivotal step in the development of potential antimicrobial derivatives based on methyl α-d-mannopyranoside. Subsequently, four additional methyl 6-O-cinnamoyl-α-d-mannopyranoside derivatives were synthesized with reasonably high yields. The chemical structures of these novel analogs were confirmed through a thorough analysis of their physicochemical properties, elemental composition, and spectroscopic data. In vitro antimicrobial assays were conducted against six bacterial strains and two fungal strains, revealing promising antifungal properties of these methyl α-d-mannopyranoside derivatives in comparison to their antibacterial activity. Moreover, cytotoxicity testing revealed that the compounds are less toxic. Further supporting these findings, molecular docking studies were performed against the H5N1 influenza A virus, indicating significant binding affinities and nonbonding interactions with the target protein 6VMZ. Notably, compounds 4 (-7.2) and 6 (-7.0) exhibited the highest binding affinities. Additionally, a 100 ns molecular dynamics simulation was conducted to assess the stability of the complex formed between the receptor 6VMZ and methyl α-d-mannopyranoside derivatives under in silico physiological conditions. The results revealed a stable conformation and binding pattern within the stimulating environment. In silico pharmacokinetic and toxicity assessments of the synthesized molecules were performed using Osiris software (version 2.9.1). Compounds 4 and 6 demonstrated favorable computational and pharmacological activities, albeit with a low drug score, possibly attributed to their higher molecular weight and irritancy. In conclusion, this study showcases the synthesis and evaluation of methyl α-d-mannopyranoside derivatives as promising candidates for antimicrobial and antifungal agents. Molecular docking and dynamics simulations, along with pharmacological predictions, contribute to our understanding of their potential therapeutic utility, although further research may be warranted to address certain pharmacological aspects.


Asunto(s)
Antiinfecciosos , Subtipo H5N1 del Virus de la Influenza A , Simulación del Acoplamiento Molecular , Manosa , Antiinfecciosos/química , Antibacterianos/química , Antifúngicos/química , Estructura Molecular , Relación Estructura-Actividad
10.
Molecules ; 28(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985587

RESUMEN

Due to the uneven distribution of glycosidase enzyme expression across bacteria and fungi, glycoside derivatives of antimicrobial compounds provide prospective and promising antimicrobial materials. Therefore, herein, we report the synthesis and characterization of six novel methyl 4,6-O-benzylidene-α-d-glucopyranoside (MBG) derivatives (2-7). The structures were ascertained using spectroscopic techniques and elemental analyses. Antimicrobial tests (zone of inhibition, MIC and MBC) were carried out to determine their ability to inhibit the growth of different Gram-positive, Gram-negative bacteria and fungi. The highest antibacterial activity was recorded with compounds 4, 5, 6 and 7. The compounds with the most significant antifungal efficacy were 4, 5, 6 and 7. Based on the prediction of activity spectra for substances (PASS), compounds 4 and 7 have promising antimicrobial capacity. Molecular docking studies focused on fungal and bacterial proteins where derivatives 3 and 6 exhibited strong binding affinities. The molecular dynamics study revealed that the complexes formed by these derivatives with the proteins L,D-transpeptidase Ykud and endoglucanase from Aspergillus niger remained stable, both over time and in physiological conditions. Structure-activity relationships, including in vitro and in silico results, revealed that the acyl chains [lauroyl-(CH3(CH2)10CO-), cinnamoyl-(C6H5CH=CHCO-)], in combination with sugar, were found to have the most potential against human and fungal pathogens. Synthetic, antimicrobial and pharmacokinetic studies revealed that MBG derivatives have good potential for antimicrobial activity, developing a therapeutic target for bacteria and fungi. Furthermore, the Petra/Osiris/Molinspiration (POM) study clearly indicated the presence of an important (O1δ-----O2δ-) antifungal pharmacophore site. This site can also be explored as a potential antiviral moiety.


Asunto(s)
Antiinfecciosos , Antifúngicos , Humanos , Antifúngicos/química , Estructura Molecular , Simulación del Acoplamiento Molecular , Farmacóforo , Compuestos de Bencilideno , Antiinfecciosos/química , Relación Estructura-Actividad , Antibacterianos/química , Bacterias , Pruebas de Sensibilidad Microbiana
11.
Medicina (Kaunas) ; 59(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37374310

RESUMEN

Nucleoside analogs are frequently used in the control of viral infections and neoplastic diseases. However, relatively few studies have shown that nucleoside analogs have antibacterial and antifungal activities. In this study, a fused pyrimidine molecule, uridine, was modified with various aliphatic chains and aromatic groups to produce new derivatives as antimicrobial agents. All newly synthesized uridine derivatives were analyzed by spectral (NMR, FTIR, mass spectrometry), elemental, and physicochemical analyses. Prediction of activity spectra for substances (PASS) and in vitro biological evaluation against bacteria and fungi indicated promising antimicrobial capability of these uridine derivatives. The tested compounds were more effective against fungal phytopathogens than bacterial strains, as determined by their in vitro antimicrobial activity. Cytotoxicity testing indicated that the compounds were less toxic. In addition, antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells was investigated, and compound 6 (2',3'-di-O-cinnamoyl-5'-O-palmitoyluridine) demonstrated promising anticancer activity. Their molecular docking against Escherichia coli (1RXF) and Salmonella typhi (3000) revealed notable binding affinities and nonbonding interactions in support of this finding. Stable conformation and binding patterns/energy were found in a stimulating 400 ns molecular dynamics (MD) simulation. Structure-activity relationship (SAR) investigation indicated that acyl chains, CH3(CH2)10CO-, (C6H5)3C-, and C2H5C6H4CO-, combined with deoxyribose, were most effective against the tested bacterial and fungal pathogens. Pharmacokinetic predictions were examined to determine their ADMET characteristics, and the results in silico were intriguing. Finally, the synthesized uridine derivatives demonstrated increased medicinal activity and high potential for future antimicrobial/anticancer agent(s).


Asunto(s)
Antiinfecciosos , Antineoplásicos , Humanos , Estructura Molecular , Uridina/farmacología , Uridina/uso terapéutico , Simulación del Acoplamiento Molecular , Nucleósidos/farmacología , Nucleósidos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
12.
Saudi Pharm J ; 31(11): 101804, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37868643

RESUMEN

Macromolecules i.e., carbohydrate derivatives are crucial to biochemical and medical research. Herein, we designed and synthesized eight methyl α-D-glucopyranoside (MGP) derivatives (2-8) in good yields following the regioselective direct acylation method. The structural configurations of the synthesized MGP derivatives were analyzed and verified using multiple physicochemical and spectroscopic techniques. Antimicrobial experiments revealed that almost all derivatives demonstrated noticeable antifungal and antibacterial efficacy. The synthesized derivatives showed minimum inhibitory concentration (MIC) values ranging from 0.75 µg/mL to 1.50 µg/mL and minimum bactericidal concentrations (MBCs) ranging from 8.00 µg/mL to 16.00 µg/mL. Compound 6 inhibited Ehrlich ascites carcinoma (EAC) cell proliferation by 10.36% with an IC50 of 2602.23 µg/mL in the MTT colorimetric assay. The obtained results were further rationalized by docking analysis of the synthesized derivatives against 4URO and 4XE3 receptors to explore the binding affinities and nonbonding interactions of MGP derivatives with target proteins. Compound 6 demonstrated the potential to bind with the target with the highest binding energy. In a stimulating environment, a molecular dynamics study showed that MGP derivatives have a stable conformation and binding pattern. The MGP derivatives were examined using POM (Petra/Osiris/Molinspiration) bioinformatics, and as a result, these derivatives showed good toxicity, bioavailability, and pharmacokinetics. Various antifungal/antiviral pharmacophore (Oδ-, O'δ-) sites were identified by using POM investigations, and compound 6 was further tested against other pathogenic fungi and viruses, such as Micron and Delta mutants of SARS-CoV-2.

13.
Glycoconj J ; 39(2): 261-290, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35037163

RESUMEN

Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl ß-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6-O-acyl MGP esters by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 6-O-MGP esters were further modified into 2,3,4-tri-O-acyl MGP esters containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed that these MGP estes have promising antifungal functionality compared to their antibacterial activities. The antimicrobial tests demonstrated that the compounds 3 and 10 were the most potent against Bacillus subtilis and Escherichia coli strains, with the minimum inhibitory concentration (MIC) values ranging from 0.352 ± 0.02 to 0.703 ± 0.01 mg/ml and minimum bactericidal concentration (MBC) values ranging from 0.704 ± 0.02 to 1.408 ± 0.04 mg/ml. Density functional theory (DFT) at the B3LYP/3-21G level of theory was employed to enumerate, frontier orbital energy, enthalpy, free energy, electronic energy, MEP, dipole moment which evaluated the effect of certain groups (aliphatic and aromatic) on drug properties. They discovered that all esters were more thermodynamically stable than the parent molecule. Molecular docking is performed using AutoDock Vina to determine the binding affinities and interactions between the MGP esters and the SARS-CoV-2 main protease. The modified esters strongly interact with the prime Cys145, His41, MET165, GLY143, THR26, and ASN142 residues. The MGP esters' shape and ability to form multiple electrostatic and hydrogen bonds with the active site match other minor-groove binders' binding modes. The molecular dynamics simulation validates the molecular docking results. The pharmacokinetic characterization of the optimized inhibitor demonstrates that these MGP esters appear to be safer inhibitors and a combination of in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and drug-likeness had promising results due to their improved kinetic properties. Structure activity relationships (SAR) study including in vitro and silico results revealed that the acyl chain, palmitoyl (C16) and 4-chlorobenzoyl (4.ClC6H4CO-) in combination with sugar were found the most potential activates against human and fungal pathogens. After all, our comprehensive computational and statistical analysis shows that these selected MGP esters can be used as potential inhibitors against the SARS-CoV-2.


Asunto(s)
Antiinfecciosos , COVID-19 , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antivirales/química , Antivirales/farmacología , Ésteres/farmacología , Galactosa , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas , SARS-CoV-2
14.
Bioorg Chem ; 125: 105850, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35533581

RESUMEN

Nucleoside precursors and nucleoside analogs occupy an important place in the treatment of viral respiratory pathologies, especially during the current COVID-19 pandemic. From this perspective, the present study has been designed to explore and evaluate the synthesis and spectral characterisation of 5́-O-(lauroyl) thymidine analogs 2-6 with different aliphatic and aromatic groups through comprehensive in vitro antimicrobial screening, cytotoxicity assessment, physicochemical aspects, molecular docking and molecular dynamics analysis, along with pharmacokinetic prediction. A unimolar one-step lauroylation of thymidine under controlled conditions furnished the 5́-O-(lauroyl) thymidine and indicated the selectivity at C-5́ position and the development of thymidine based potential antimicrobial analogs, which were further converted into four newer 3́-O-(acyl)-5́-O-(lauroyl) thymidine analogs in reasonably good yields. The chemical structures of the newly synthesised analogs were ascertained by analysing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial tests against five bacteria and two fungi, along with the prediction of activity spectra for substances (PASS), indicated promising antibacterial functionality for these thymidine analogs compared to antifungal activity. In support of this observation, molecular docking experiments have been performed against the main protease of SARS-CoV-2, and significant binding affinities and non-bonding interactions were observed against the main protease (6LU7, 6Y84 and 7BQY), considering hydroxychloroquine (HCQ) as standard. Moreover, the 100 ns molecular dynamics simulation process was performed to monitor the behaviour of the complex structure formed by the main protease under in silico physiological conditions to examine its stability over time, and this revealed a stable conformation and binding pattern in a stimulating environment of thymidine analogs. Cytotoxicity determination confirmed that compounds were found less toxic. Pharmacokinetic predictions were investigated to evaluate their absorption, distribution, metabolism and toxic properties, and the combination of pharmacokinetic and drug-likeness predictions has shown promising results in silico. The POM analysis shows the presence of an antiviral (O1δ-, O2δ-) pharmacophore site. Overall, the current study should be of great help in the development of thymidine-based, novel, multiple drug-resistant antimicrobial and COVID-19 drugs.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antibacterianos , Antivirales/química , Antivirales/farmacología , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Inhibidores de Proteasas/química , Timidina/farmacología , Proteínas no Estructurales Virales/metabolismo
15.
Molecules ; 28(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36615413

RESUMEN

The chemistry and biochemistry of carbohydrate esters are essential parts of biochemical and medicinal research. A group of methyl ß-d-galactopyranoside (ß-MGP, 1) derivatives was acylated with 3-bromobenzoyl chloride and 4-bromobenzoyl chloride in anhydrous N,N-dimethylformamide/triethylamine to obtain 6-O-substitution products, which were subsequently converted into 2,3,4-tri-O-acyl derivatives with different aliphatic and aromatic substituents. Spectroscopic and elemental data exploration of these derivatives confirmed their chemical structures. In vitro biological experiments against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed ascending antifungal and antibacterial activities compared with their antiviral activities. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) experiments were performed for two derivatives, 3 and 9, based on their antibacterial activities. Most of these derivatives showed >780% inhibition of fungal mycelial growth. Density functional theory (DFT) was used to calculate the chemical descriptors and thermodynamic properties, whereas molecular docking was performed against antibacterial drug targets, including PDB: 4QDI, 5A5E, 7D27, 1ZJI, 3K8E, and 2MRW, and antifungal drug targets, such as PDB: 1EA1 and 1AI9, to identify potential drug candidates for microbial pathogens. A 100 ns molecular dynamics simulation study revealed stable conformation and binding patterns in a stimulating environment by their uniform RMSD, RMSF, SASA, H-bond, and RoG profiles. In silico pharmacokinetic and quantitative structure−activity relationship (QSAR) calculations (pIC50 values 3.67~8.15) suggested that all the designed ß-MGP derivatives exhibited promising results due to their improved kinetic properties with low aquatic and non-aquatic toxicities. These biological, structure−activity relationship (SAR) [lauroyl-(CH3(CH2)10CO-) group was found to have potential], and in silico computational studies revealed that the newly synthesized MGP derivatives are potential antibacterial/antifungal candidates and can serve as therapeutic targets for human and plant pathogens.


Asunto(s)
Antifúngicos , Galactosa , Humanos , Antifúngicos/farmacología , Antifúngicos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Cloruros , Relación Estructura-Actividad , Antibacterianos/farmacología , Antibacterianos/química , Relación Estructura-Actividad Cuantitativa , Pruebas de Sensibilidad Microbiana , Estructura Molecular
16.
Mar Drugs ; 19(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34356819

RESUMEN

In recent years, there has been considerable interest in lectins from marine invertebrates. In this study, the biological activities of a lectin protein isolated from the eggs of Sea hare (Aplysia kurodai) were evaluated. The 40 kDa Aplysia kurodai egg lectin (or AKL-40) binds to D-galacturonic acid and D-galactose sugars similar to previously purified isotypes with various molecular weights (32/30 and 16 kDa). The N-terminal sequence of AKL-40 was similar to other sea hare egg lectins. The lectin was shown to be moderately toxic to brine shrimp nauplii, with an LC50 value of 63.63 µg/mL. It agglutinated Ehrlich ascites carcinoma cells and reduced their growth, up to 58.3% in vivo when injected into Swiss albino mice at a rate of 2 mg/kg/day. The morphology of these cells apparently changed due to AKL-40, while the expression of apoptosis-related genes (p53, Bax, and Bcl-XL) suggested a possible apoptotic pathway of cell death. AKL-40 also inhibited the growth of human erythroleukemia cells, probably via activating the MAPK/ERK pathway, but did not affect human B-lymphoma cells (Raji) or rat basophilic leukemia cells (RBL-1). In vitro, lectin suppressed the growth of Ehrlich ascites carcinoma and U937 cells by 37.9% and 31.8%, respectively. Along with strong antifungal activity against Talaromyces verruculosus, AKL showed antibacterial activity against Staphylococcus aureus, Shigella sonnei, and Bacillus cereus whereas the growth of Escherichia coli was not affected by the lectin. This study explores the antiproliferative and antimicrobial potentials of AKL as well as its involvement in embryo defense of sea hare.


Asunto(s)
Antibacterianos/farmacología , Aplysia , Lectinas/farmacología , Animales , Organismos Acuáticos , Huevos , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
17.
Mar Drugs ; 14(5)2016 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-27187419

RESUMEN

MytiLec is an α-d-galactose-binding lectin with a unique primary structure isolated from the Mediterranean mussel (Mytilus galloprovincialis). The lectin adopts a ß-trefoil fold that is also found in the B-sub-unit of ricin and other ricin-type (R-type) lectins. We are introducing MytiLec(-1) and its two variants (MytiLec-2 and -3), which both possess an additional pore-forming aerolysin-like domain, as members of a novel multi-genic "mytilectin family" in bivalve mollusks. Based on the full length mRNA sequence (911 bps), it was possible to elucidate the coding sequence of MytiLec-1, which displays an extended open reading frame (ORF) at the 5' end of the sequence, confirmed both at the mRNA and at the genomic DNA sequence level. While this extension could potentially produce a polypeptide significantly longer than previously reported, this has not been confirmed yet at the protein level. MytiLec-1 was revealed to be encoded by a gene consisting of two exons and a single intron. The first exon comprised the 5'UTR and the initial ATG codon and it was possible to detect a putative promoter region immediately ahead of the transcription start site in the MytiLec-1 genomic locus. The remaining part of the MytiLec-1 coding sequence (including the three sub-domains, the 3'UTR and the poly-A signal) was included in the second exon. The bacteriostatic activity of MytiLec-1 was determined by the agglutination of both Gram-positive and Gram-negative bacteria, which was reversed by the co-presence of α-galactoside. Altogether, these data support the classification of MytiLec-1 as a member of the novel mytilectin family and suggest that this lectin may play an important role as a pattern recognition receptor in the innate immunity of mussels.


Asunto(s)
Bivalvos/genética , ADN Complementario/genética , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Lectinas/genética , Mytilus/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bivalvos/inmunología , Exones/genética , Genoma/genética , Inmunidad Innata/inmunología , Lectinas/inmunología , Mytilus/inmunología , Sistemas de Lectura Abierta/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Alineación de Secuencia
18.
Mar Drugs ; 13(12): 7377-89, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26694420

RESUMEN

MytiLec; a novel lectin isolated from the Mediterranean mussel (Mytilus galloprovincialis); shows strong binding affinity to globotriose (Gb3: Galα1-4Galß1-4Glc). MytiLec revealed ß-trefoil folding as also found in the ricin B-subunit type (R-type) lectin family, although the amino acid sequences were quite different. Classification of R-type lectin family members therefore needs to be based on conformation as well as on primary structure. MytiLec specifically killed Burkitt's lymphoma Ramos cells, which express Gb3. Fluorescein-labeling assay revealed that MytiLec was incorporated inside the cells. MytiLec treatment of Ramos cells resulted in activation of both classical MAPK/ extracellular signal-regulated kinase and extracellular signal-regulated kinase (MEK-ERK) and stress-activated (p38 kinase and JNK) Mitogen-activated protein kinases (MAPK) pathways. In the cells, MytiLec treatment triggered expression of tumor necrosis factor (TNF)-α (a ligand of death receptor-dependent apoptosis) and activation of mitochondria-controlling caspase-9 (initiator caspase) and caspase-3 (activator caspase). Experiments using the specific MEK inhibitor U0126 showed that MytiLec-induced phosphorylation of the MEK-ERK pathway up-regulated expression of the cyclin-dependent kinase inhibitor p21, leading to cell cycle arrest and TNF-α production. Activation of caspase-3 by MytiLec appeared to be regulated by multiple different pathways. Our findings, taken together, indicate that the novel R-type lectin MytiLec initiates programmed cell death of Burkitt's lymphoma cells through multiple pathways (MAPK cascade, death receptor signaling; caspase activation) based on interaction of the lectin with Gb3-containing glycosphingolipid-enriched microdomains on the cell surface.


Asunto(s)
Apoptosis/efectos de los fármacos , Linfoma de Burkitt/tratamiento farmacológico , Lectinas/farmacología , Animales , Linfoma de Burkitt/patología , Butadienos/farmacología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Humanos , Células K562 , Lectinas/aislamiento & purificación , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mytilus/metabolismo , Nitrilos/farmacología , Trisacáridos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Molecules ; 19(9): 13990-4003, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25197935

RESUMEN

A specific galactose-binding lectin was shown to inhibit the hemolytic effect of streptolysin O (SLO), an exotoxin produced by Streptococcus pyogenes. Commercially available lectins that recognize N-acetyllactosamine (ECA), T-antigen (PNA), and Tn-antigen (ABA) agglutinated rabbit erythrocytes, but had no effect on SLO-induced hemolysis. In contrast, SLO-induced hemolysis was inhibited by AKL, a lectin purified from sea hare (Aplysia kurodai) eggs that recognizes α-galactoside oligosaccharides. This inhibitory effect was blocked by the co-presence of d-galactose, which binds to AKL. A possible explanation for these findings is that cholesterol-enriched microdomains containing glycosphingolipids in the erythrocyte membrane become occupied by tightly stacked lectin molecules, blocking the interaction between cholesterol and SLO that would otherwise result in penetration of the membrane. Growth of S. pyogenes was inhibited by lectins from a marine invertebrate (AKL) and a mushroom (ABA), but was promoted by a plant lectin (ECA). Both these inhibitory and promoting effects were blocked by co-presence of galactose in the culture medium. Our findings demonstrate the importance of glycans and lectins in regulating mechanisms of toxicity, creation of pores in the target cell membrane, and bacterial growth.


Asunto(s)
Aplysia/química , Eritrocitos/fisiología , Galectinas/química , Hemólisis/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Proteínas Bacterianas/farmacología , Eritrocitos/efectos de los fármacos , Galectinas/aislamiento & purificación , Galectinas/farmacología , Hemolíticos/farmacología , Pruebas de Sensibilidad Microbiana , Óvulo/química , Conejos , Streptococcus pyogenes/efectos de los fármacos , Estreptolisinas/farmacología
20.
J Biomol Struct Dyn ; 42(2): 1015-1030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37027788

RESUMEN

One of the most common viral infections worldwide is the Human Papilloma Virus (HPV) which has been linked to cancer and other diseases in many countries. Monosaccharide esters are significant in the field of carbohydrate chemistry because they are efficient in the synthesis of pharmacologically active compounds. Therefore, the present study aimed to perform thermodynamic, molecular docking and molecular dynamics study of a series of previously designed monosaccharaides, methyl ß-d-galactopyranoside (MGP, 1) esters (2-10) with along with their physicochemical and pharmacokinetic properties. We have optimized the MGP esters employing the DFT study at the B3LYP/6-311 + G (d,p) level of theory. The subsequent analysis also investigated the electronic energies, enthalpies, entropies, polarizability, and natural bond orbital (NBO) of these modified esters. Then, MGP esters were docked into CTX-M-15 extended-spectrum beta-lactamase from Escherichia coli (PDB: 4HBT) and E2 DNA-binding domain from human papillomavirus type 31 (PDB: 1A7G), and the results revealed that most of the esters can efficiently bind to the target. Desmond was used to doing molecular dynamics simulations at 200 ns in addition to molecular docking to look at the binding conformational stability of the protein-ligand complex. Based on RMSD and RMSF, it was determined that the stability of the protein-ligand combination was maintained during the whole 200 ns simulations for all compounds. Finally, a pharmacokinetic study suggests that modified esters of MGP exhibited better pharmacokinetic characteristics and were less hazardous than the parent drug. This work demonstrated that potential MGP esters can efficiently bind to 4HBT and 1A7G proteins and opened avenues for the development of newer antimicrobial agents that can target dangerous pathogens.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antiinfecciosos , Galactosa , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ligandos , Escherichia coli , Ésteres , Antivirales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA