Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 31(3): 647-656, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36415148

RESUMEN

Despite recent advances in molecular therapeutics, lung cancer is still a leading cause of cancer deaths. Currently, limited targeted therapy options and acquired drug resistance present significant barriers in the treatment of patients with lung cancer. New strategies in drug development, including those that take advantage of the intracellular ubiquitin-proteasome system to induce targeted protein degradation, have the potential to advance the field of personalized medicine for patients with lung cancer. Specifically, small molecule proteolysis targeting chimeras (PROTACs), consisting of two ligands connected by a linker that bind to a target protein and an E3 ubiquitin ligase, have been developed against many cancer targets, providing promising opportunities for advanced lung cancer. In this review, we focus on the rationale for PROTAC therapy as a new targeted therapy and the current status of PROTAC development in lung cancer.


Asunto(s)
Neoplasias Pulmonares , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
2.
Oncologist ; 25(9): 810-817, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32372416

RESUMEN

PURPOSE: Delta-like protein 3 (DLL3) is being developed as a predictive biomarker for DLL3-targeting antibody-drug conjugate and other therapies. Given the neuroendocrine features of Merkel cell carcinoma (MCC), we sought to evaluate DLL3 expression and its role in MCC. EXPERIMENTAL DESIGN: Formalin-fixed and paraffin-embedded MCC cases were consecutively selected. Immunohistochemistry was performed for DLL3 (SC16.65 antibody) and polyomavirus large T-antigen (sc-136172 antibody). Slides were read out for percentage of positive tumor cells. Cox proportional hazards model was applied to assess the association between DLL3 expression and overall survival (OS). A patient with a DLL3-expressing MCC was treated with rovalpituzumab tesirine (Rova-T) in the "other tumor" cohort of NCT02709889 and assessed for response. RESULTS: The median H-score of DLL3 expression of 65 patients included was 60 (interquartile range, 30-100). Fifty-eight cases (89%) had ≥1% tumor cells positive for DLL3 expression with any intensity, of which the median DLL3 expression was 50% (interquartile range, 25%-70%). Thirty-four cases (52%) had ≥50% tumor cells positive for DLL3 expression with any intensity. Higher H-score of DLL3 expression was associated with higher polyomavirus nuclear expression (p = .003) when it was dichotomized to negative versus positive. H-score of DLL3 expression did not predict OS of patients with MCC (p = .4) after being adjusted for common clinicopathological factors. A patient treated with Rova-T for refractory metastatic MCC achieved partial response. CONCLUSIONS: DLL3 overexpression is very common in MCC by immunohistochemistry. The response to treatment suggests that DLL3 expression may have predictive relevance for DLL3-targeting therapies in MCC. IMPLICATIONS FOR PRACTICE: Delta-like protein 3 (DLL3) is being developed as a predictive biomarker to identify patients for treatment with DLL3-targeting agents. Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin. It was found that DLL3 overexpression is very common in MCC by immunohistochemistry and significantly associated with Merkel cell polyomavirus expression. Despite the lack of prognostic significance in this cohort, DLL3 expression may have predictive relevance for DLL3-targeting therapies in MCC. The high levels of DLL3 expression in a subset of MCC may potentially be used to select patients to receive DLL3-targeting therapies.


Asunto(s)
Carcinoma de Células de Merkel , Neoplasias Cutáneas , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células de Merkel/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética
3.
Cancer Invest ; 36(5): 289-295, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30040495

RESUMEN

We conducted a retrospective study of stereotactic ablative radiotherapy (SABR) for 94 patients with non-small-cell lung cancer at our institution. The patients were treated with either 50 Gy in five treatments or 48 Gy in four treatments, corresponding to biologically effective doses (BED) of 100 Gy or 105.6 Gy, respectively. The results demonstrate that, with relatively low BEDs, we can achieve excellent local control with minimal toxicity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/cirugía , Fraccionamiento de la Dosis de Radiación , Neoplasias Pulmonares/cirugía , Recurrencia Local de Neoplasia/prevención & control , Neumonitis por Radiación/prevención & control , Radiocirugia/métodos , Adenocarcinoma/patología , Adenocarcinoma/cirugía , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/cirugía , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos , Tasa de Supervivencia
4.
Proc Natl Acad Sci U S A ; 111(32): E3260-8, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071166

RESUMEN

Chimeric oncoproteins created by chromosomal translocations are among the most common genetic mutations associated with tumorigenesis. Malignant mucoepidermoid salivary gland tumors, as well as a growing number of solid epithelial-derived tumors, can arise from a recurrent t (11, 19)(q21;p13.1) translocation that generates an unusual chimeric cAMP response element binding protein (CREB)-regulated transcriptional coactivator 1 (CRTC1)/mastermind-like 2 (MAML2) (C1/M2) oncoprotein comprised of two transcriptional coactivators, the CRTC1 and the NOTCH/RBPJ coactivator MAML2. Accordingly, the C1/M2 oncoprotein induces aberrant expression of CREB and NOTCH target genes. Surprisingly, here we report a gain-of-function activity of the C1/M2 oncoprotein that directs its interactions with myelocytomatosis oncogene (MYC) proteins and the activation of MYC transcription targets, including those involved in cell growth and metabolism, survival, and tumorigenesis. These results were validated in human mucoepidermoid tumor cells that harbor the t (11, 19)(q21;p13.1) translocation and express the C1/M2 oncoprotein. Notably, the C1/M2-MYC interaction is necessary for C1/M2-driven cell transformation, and the C1/M2 transcriptional signature predicts other human malignancies having combined involvement of MYC and CREB. These findings suggest that such gain-of-function properties may also be manifest in other oncoprotein fusions found in human cancer and that agents targeting the C1/M2-MYC interface represent an attractive strategy for the development of effective and safe anticancer therapeutics in tumors harboring the t (11, 19) translocation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 19/genética , Proteínas de Unión al ADN/química , Redes Reguladoras de Genes , Genes myc , Células HEK293 , Humanos , Ratones , Tumor Mucoepidermoide/genética , Tumor Mucoepidermoide/metabolismo , Células 3T3 NIH , Proteínas Nucleares/química , Proteínas de Fusión Oncogénica/química , Dominios y Motivos de Interacción de Proteínas , Ratas , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/metabolismo , Transactivadores , Factores de Transcripción/química , Translocación Genética
5.
Nature ; 463(7283): 899-905, 2010 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-20164920

RESUMEN

A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-kappaBeta pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen/genética , Neoplasias/genética , Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Amplificación de Genes/genética , Genómica , Humanos , Familia de Multigenes/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Neoplasias/clasificación , Neoplasias/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal , Proteína bcl-X/genética
6.
Eur Arch Otorhinolaryngol ; 273(10): 3293-7, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26796877

RESUMEN

The purpose of this study is to report our institutional experience using radiotherapy in the treatment of ameloblastoma and ameloblastic carcinoma. Three patients with ameloblastoma and 3 patients with ameloblastic carcinoma were treated with radiotherapy alone (2 patients) or surgery and postoperative radiotherapy (4 patients) at the University of Florida between 1973 and 2007. Follow-up ranged from 4.0 to 13.1 years with a median of 7.8 years. Radiotherapy complications were scored using the Common Terminology Criteria for Adverse Events, version 4.0. Local control was achieved in 4 of the 6 patients. One patient treated with RT alone for an unresectable ameloblastoma developed a local recurrence and metastases in both the cervical lymph nodes and lungs, but had excellent response to dual BRAF/MEK inhibition with dabrafenib and trametinib. Another patient treated with surgery and postoperative radiotherapy for an ameloblastic carcinoma recurred locally without metastasis, but was not salvaged. No significant treatment-related complications were observed. For patients with local recurrence or inadequate margins after surgery, adjuvant radiotherapy provides the potential for disease control. In the setting of metastatic disease, targeted therapies may provide an additional opportunity for salvage.


Asunto(s)
Ameloblastoma , Carcinoma de Células Escamosas , Imidazoles/administración & dosificación , Disección del Cuello , Oximas/administración & dosificación , Piridonas/administración & dosificación , Pirimidinonas/administración & dosificación , Radioterapia Adyuvante , Adulto , Anciano , Ameloblastoma/patología , Ameloblastoma/terapia , Antineoplásicos/administración & dosificación , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , Terapia Combinada , Femenino , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Humanos , Efectos Adversos a Largo Plazo/diagnóstico , Efectos Adversos a Largo Plazo/etiología , Masculino , Persona de Mediana Edad , Disección del Cuello/efectos adversos , Disección del Cuello/métodos , Recurrencia Local de Neoplasia , Evaluación de Procesos y Resultados en Atención de Salud , Radioterapia Adyuvante/efectos adversos , Radioterapia Adyuvante/métodos
7.
Int J Cancer ; 135(1): 128-37, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24347111

RESUMEN

Thymidylate synthase (TS), a critical enzyme for DNA synthesis and repair, is both a potential tumor prognostic biomarker as well as a tumorigenic oncogene in animal models. We have now studied the clinical implications of TS expression in gastroenteropancreatic (GEP) neuroendocrine tumors (NETs) and compared these results to other cell cycle biomarker genes. Protein tissue arrays were used to study TS, Ki-67, Rb, pRb, E2F1, p18, p21, p27 and menin expression in 320 human GEP-NETs samples. Immunohistochemical expression was correlated with univariate and multivariate predictors of survival utilizing Kaplan Meier and Cox proportional hazards models. Real time RT-PCR was used to validate these findings. We found that 78 of 320 GEP-NETs (24.4%) expressed TS. NETs arising in the colon, stomach and pancreas showed the highest expression of TS (47.4%, 42.6% and 37.3%, respectively), whereas NETs of the appendix, rectum and duodenum displayed low TS expression (3.3%, 12.9% and 15.4%, respectively). TS expression in GEP-NETs was associated with poorly differentiated endocrine carcinoma, angiolymphatic invasion, lymph node metastasis and distant metastasis (p < 0.05). Patients with TS-positive NETs had markedly worse outcomes than TS-negative NETs as shown by univariate (p < 0.001) and multivariate (p = 0.01) survival analyses. Expression of p18 predicted survival in TS-positive patients that received chemotherapy (p = 0.015). In conclusion, TS protein expression was an independent prognostic biomarker for GEP-NETs. The strong association of increased TS expression with aggressive disease and early death supports the role of TS as a cancer promoting agent in these tumors.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias Intestinales/genética , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/genética , Pronóstico , Neoplasias Gástricas/genética , Timidilato Sintasa/biosíntesis , Adulto , Anciano , Animales , Biomarcadores de Tumor/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Intestinales/mortalidad , Neoplasias Intestinales/patología , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Tumores Neuroendocrinos/mortalidad , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Modelos de Riesgos Proporcionales , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Timidilato Sintasa/genética
8.
Cells ; 13(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38534371

RESUMEN

BCL-xL and BCL-2 are validated therapeutic targets in small-cell lung cancer (SCLC). Targeting these proteins with navitoclax (formerly ABT263, a dual BCL-xL/2 inhibitor) induces dose-limiting thrombocytopenia through on-target BCL-xL inhibition in platelets. Therefore, platelet toxicity poses a barrier in advancing the clinical translation of navitoclax. We have developed a strategy to selectively target BCL-xL in tumors, while sparing platelets, by utilizing proteolysis-targeting chimeras (PROTACs) that hijack the cellular ubiquitin proteasome system for target ubiquitination and subsequent degradation. In our previous study, the first-in-class BCL-xL PROTAC, called DT2216, was shown to have synergistic antitumor activities when combined with venetoclax (formerly ABT199, BCL-2-selective inhibitor) in a BCL-xL/2 co-dependent SCLC cell line, NCI-H146 (hereafter referred to as H146), in vitro and in a xenograft model. Guided by these findings, we evaluated our newly developed BCL-xL/2 dual degrader, called 753b, in three BCL-xL/2 co-dependent SCLC cell lines and the H146 xenograft models. 753b was found to degrade both BCL-xL and BCL-2 in these cell lines. Importantly, it was considerably more potent than DT2216, navitoclax, or DT2216 + venetoclax in reducing the viability of BCL-xL/2 co-dependent SCLC cell lines in cell culture. In vivo, 5 mg/kg weekly dosing of 753b was found to lead to significant tumor growth delay, similar to the DT2216 + venetoclax combination in H146 xenografts, by degrading both BCL-xL and BCL-2. Additionally, 753b administration at 5 mg/kg every four days induced tumor regressions. At this dosage, 753b was well tolerated in mice, without observable induction of severe thrombocytopenia as seen with navitoclax, and no evidence of significant changes in mouse body weights. These results suggest that the BCL-xL/2 dual degrader could be an effective and safe therapeutic for a subset of SCLC patients, warranting clinical trials in future.


Asunto(s)
Compuestos de Anilina , Antineoplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Sulfonamidas , Trombocitopenia , Humanos , Ratones , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Proteína bcl-X/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Antineoplásicos/farmacología , Modelos Animales de Enfermedad
9.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38464204

RESUMEN

BCL-xL and BCL-2 are validated therapeutic targets in small-cell lung cancer (SCLC). Targeting these proteins with navitoclax (formerly ABT263, a dual BCL-xL/2 inhibitor) induces dose-limiting thrombocytopenia through on-target BCL-xL inhibition in platelets. Therefore, platelet toxicity poses a barrier in advancing the clinical translation of navitoclax. We have developed a strategy to selectively target BCL-xL in tumors, while sparing platelets, by utilizing proteolysis-targeting chimeras (PROTACs) that hijack the cellular ubiquitin proteasome system for target ubiquitination and subsequent degradation. In our previous study, the first-in-class BCL-xL PROTAC, called DT2216, was shown to have synergistic antitumor activities when combined with venetoclax (formerly ABT199, BCL-2-selective inhibitor) in a BCL-xL/2 co-dependent SCLC cell line, NCI-H146 (hereafter referred to as H146), in vitro and in a xenograft model. Guided by these findings, we evaluated our newly developed BCL-xL/2 dual degrader, called 753b, in three BCL-xL/2 co-dependent SCLC cell lines and the H146 xenograft models. 753b was found to degrade both BCL-xL and BCL-2 in these cell lines. Importantly, it was considerably more potent than DT2216, navitoclax, or DT2216+venetoclax to reduce the viability of BCL-xL/2 co-dependent SCLC cell lines in cell culture. In vivo, 5 mg/kg weekly dosing of 753b leads to significant tumor growth delay similar to the DT2216+venetoclax combination in H146 xenografts by degrading both BCL-xL and BCL-2. Additionally, 753b administration at 5 mg/kg every four days induced tumor regressions. 753b at this dosage was well tolerated in mice without induction of severe thrombocytopenia as seen with navitoclax nor induced significant changes in mouse body weights. These results suggest that the BCL-xL/2 dual degrader could be an effective and safe therapeutic for a subset of SCLC patients warranting clinical trials in future.

10.
J Immunother Cancer ; 12(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316517

RESUMEN

BACKGROUND: Pancreatic cancer is one of the deadliest cancer types and represents a major unmet medical need. CheckMate 032 investigated safety and efficacy of nivolumab monotherapy and nivolumab plus ipilimumab with/without cobimetinib in advanced/metastatic solid tumors, including pancreatic cancer. METHODS: In the original pancreatic cancer cohort, previously treated patients (≥1 prior regimen) with advanced/metastatic pancreatic adenocarcinoma were assigned to nivolumab 3 mg/kg every 2 weeks (monotherapy arm) or nivolumab 1 mg/kg and ipilimumab 1 mg/kg or 3 mg/kg every 3 weeks for four doses, followed by nivolumab 3 mg/kg every 2 weeks (combination arm). A subsequent modified pancreatic cohort (one or two prior regimens) received nivolumab 3 mg/kg every 2 weeks, ipilimumab 1 mg/kg every 6 weeks, and cobimetinib 60 mg orally once daily for 21 days on and 7 days off (triplet arm). The primary endpoint was investigator-assessed objective response rate (ORR). Secondary endpoints were investigator-assessed progression-free survival (PFS), PFS rate, overall survival (OS), OS rate, safety, and tolerability. Additionally, ORR, PFS, and duration of response were assessed by blinded independent central review (BICR) in the triplet arm. RESULTS: 18 patients received nivolumab monotherapy, 21 received nivolumab plus ipilimumab, and 30 received nivolumab plus ipilimumab plus cobimetinib. In the triplet arm, partial responses were observed in two patients per investigator (ORR 6.7% (95% CI 0.8% to 22.1%)) and in three patients per BICR (ORR 10% (95% CI 2.1% to 26.5%)); no responses were observed in the other arms. Median (95% CI) PFS per investigator was 1.4 (1.3 to 2.0), 1.4 (1.2 to 2.7), and 3.0 (1.5 to 4.1) months for the monotherapy, nivolumab plus ipilimumab, and triplet arms, respectively. Median (95% CI) OS was 5.1 (2.0 to 9.0) months, 4.0 (1.9 to 5.6) months, and 6.2 (3.9 to 11.4) months, respectively. Most treatment-related adverse events were grade 2 or less. CONCLUSIONS: Nivolumab with or without ipilimumab did not elicit objective responses in previously treated patients with advanced pancreatic adenocarcinoma, although three confirmed partial responses and manageable safety were observed with cobimetinib-containing triplet therapy. The small sample size and differences in baseline disease-specific characteristics between arms limit interpretation of these results.


Asunto(s)
Adenocarcinoma , Azetidinas , Neoplasias Pancreáticas , Piperidinas , Humanos , Nivolumab/uso terapéutico , Ipilimumab/efectos adversos , Adenocarcinoma/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico
11.
Nat Genet ; 33(2): 208-13, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12539049

RESUMEN

Truncation of Notch1 has been shown to cause a subtype of acute leukemia, and activation of Notch4 has been associated with mammary and salivary gland carcinomas of mice. Here we identify a new mechanism for disrupting Notch signaling in human tumorigenesis, characterized by altered function of a new ortholog of the Drosophila melanogaster Notch co-activator molecule Mastermind. We cloned the t(11;19) translocation that underlies the most common type of human malignant salivary gland tumor. This rearrangement fuses exon 1 from a novel gene of unknown function at 19p13, termed mucoepidermoid carcinoma translocated 1 (MECT1), with exons 2-5 of a novel member of the Mastermind-like gene family (MAML2) at 11q21 (ref. 3). Similar to D. melanogaster Mastermind and MAML1 (refs. 4,5), full-length MAML2 functioned as a CSL (CBF-1, suppressor of hairless and Lag-1)-dependent transcriptional co-activator for ligand-stimulated Notch. In contrast, MECT1-MAML2 activated transcription of the Notch target gene HES1 independently of both Notch ligand and CSL binding sites. MECT1-MAML2 induced foci formation in RK3E epithelial cells, confirming a biological effect for the fusion product. These data suggest a new mechanism to disrupt the function of a Notch co-activator in a common type of malignant salivary gland tumor.


Asunto(s)
Fusión Artificial Génica , Carcinoma Mucoepidermoide/genética , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 19/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Translocación Genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinoma Mucoepidermoide/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Regulación de la Expresión Génica , Reordenamiento Génico , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Hibridación Fluorescente in Situ , Péptidos y Proteínas de Señalización Intercelular , Proteína Jagged-2 , Cariotipificación , Ligandos , Luciferasas/metabolismo , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/metabolismo , Regiones Promotoras Genéticas , Receptores Notch , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleasa Pancreática/metabolismo , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/metabolismo , Transducción de Señal , Transactivadores , Factor de Transcripción HES-1 , Factores de Transcripción , Transcripción Genética , Activación Transcripcional , Transfección , Células Tumorales Cultivadas
12.
Oncogene ; 42(23): 1926-1939, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37106126

RESUMEN

We previously showed that elevated TYMS exhibits oncogenic properties and promotes tumorigenesis after a long latency, suggesting cooperation with sequential somatic mutations. Here we report the cooperation of ectopic expression of human TYMS with loss of Ink4a/Arf, one of the most commonly mutated somatic events in human cancer. Using an hTS/Ink4a/Arf -/- genetically engineered mouse model we showed that deregulated TYMS expression in Ink4a/Arf null background accelerates tumorigenesis and metastasis. In addition, tumors from TYMS-expressing mice were associated with a phenotype of genomic instability including enhanced double strand DNA damage, aneuploidy and loss of G1/S checkpoint. Downregulation of TYMS in vitro decreased cell proliferation and sensitized tumor cells to antimetabolite chemotherapy. In addition, depletion of TYMS in vivo by TYMS shRNA reduced tumor incidence, delayed tumor progression and prolonged survival in hTS/Ink4a/Arf -/- mice. Our data shows that activation of TYMS in Ink4a/Arf null background enhances uncontrolled cell proliferation and tumor growth, supporting the development of new agents and strategies targeting TYMS to delay tumorigenesis and prolong survival.


Asunto(s)
Neoplasias , Timidilato Sintasa , Animales , Humanos , Ratones , Transformación Celular Neoplásica/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inestabilidad Genómica , Neoplasias/genética , Timidilato Sintasa/genética , Proteína p14ARF Supresora de Tumor
13.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958400

RESUMEN

Despite advances in cancer screening, late-stage cancer diagnosis is still a major cause of morbidity and mortality in the United States. In this study, we aim to understand demographic and geographic factors associated with receiving a late-stage diagnosis (LSD) of lung, colorectal, breast, or cervical cancer. (1) Methods: We analyzed data of patients with a cancer diagnosis between 2016 and 2020 from the Florida Cancer Data System (FCDS), a statewide population-based registry. To investigate correlates of LSD, we estimated multi-variable logistic regression models for each cancer while controlling for age, sex, race, insurance, and census tract rurality and poverty. (2) Results: Patients from high-poverty rural areas had higher odds for LSD of lung (OR = 1.23, 95% CI (1.10, 1.37)) and breast cancer (OR = 1.31, 95% CI (1.17,1.47)) than patients from low-poverty urban areas. Patients in high-poverty urban areas saw higher odds of LSD for lung (OR = 1.05 95% CI (1.00, 1.09)), breast (OR = 1.10, 95% CI (1.06, 1.14)), and cervical cancer (OR = 1.19, 95% CI (1.03, 1.37)). (3) Conclusions: Financial barriers contributing to decreased access to care likely drive LSD for cancer in rural and urban communities of Florida.

14.
Cell Death Discov ; 9(1): 1, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36588105

RESUMEN

Small-cell lung cancer (SCLC) is an aggressive malignancy with limited therapeutic options. The dismal prognosis in SCLC is in part associated with an upregulation of BCL-2 family anti-apoptotic proteins, including BCL-XL and MCL-1. Unfortunately, the currently available inhibitors of BCL-2 family anti-apoptotic proteins, except BCL-2 inhibitors, are not clinically relevant because of various on-target toxicities. We, therefore, aimed to develop an effective and safe strategy targeting these anti-apoptotic proteins with DT2216 (our platelet-sparing BCL-XL degrader) and AZD8055 (an mTOR inhibitor) to avoid associated on-target toxicities while synergistically optimizing tumor response. Through BH3 mimetic screening, we identified a subset of SCLC cell lines that is co-dependent on BCL-XL and MCL-1. After screening inhibitors of selected tumorigenic pathways, we found that AZD8055 selectively downregulates MCL-1 in SCLC cells and its combination with DT2216 synergistically killed BCL-XL/MCL-1 co-dependent SCLC cells, but not normal cells. Mechanistically, the combination caused BCL-XL degradation and suppression of MCL-1 expression, and thus disrupted MCL-1 interaction with BIM leading to an enhanced apoptotic induction. In vivo, the DT2216 + AZD8055 combination significantly inhibited the growth of cell line-derived and patient-derived xenografts and reduced tumor burden accompanied by increased survival in a genetically engineered mouse model of SCLC without causing appreciable thrombocytopenia or other normal tissue injuries. Thus, these preclinical findings lay a strong foundation for future clinical studies to test DT2216 + mTOR inhibitor combinations in a subset of SCLC patients whose tumors are co-driven by BCL-XL and MCL-1.

15.
JCI Insight ; 8(10)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37097751

RESUMEN

Although thymidylate synthase (TYMS) inhibitors have served as components of chemotherapy regimens, the currently available inhibitors induce TYMS overexpression or alter folate transport/metabolism feedback pathways that tumor cells exploit for drug resistance, limiting overall benefit. Here we report a small molecule TYMS inhibitor that i) exhibited enhanced antitumor activity as compared with current fluoropyrimidines and antifolates without inducing TYMS overexpression, ii) is structurally distinct from classical antifolates, iii) extended survival in both pancreatic xenograft tumor models and an hTS/Ink4a/Arf null genetically engineered mouse tumor model, and iv) is well tolerated with equal efficacy using either intraperitoneal or oral administration. Mechanistically, we verify the compound is a multifunctional nonclassical antifolate, and using a series of analogs, we identify structural features allowing direct TYMS inhibition while maintaining the ability to inhibit dihydrofolate reductase. Collectively, this work identifies nonclassical antifolate inhibitors that optimize inhibition of thymidylate biosynthesis with a favorable safety profile, highlighting the potential for enhanced cancer therapy.


Asunto(s)
Antagonistas del Ácido Fólico , Ratones , Animales , Humanos , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/uso terapéutico , Antagonistas del Ácido Fólico/química , Inhibidores Enzimáticos/farmacología , Resistencia a Medicamentos , Timidilato Sintasa
16.
Cancer Cell ; 5(4): 341-51, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15093541

RESUMEN

Thymidylate synthase (TS) is an E2F1-regulated enzyme that is essential for DNA synthesis and repair. TS protein and mRNA levels are elevated in many human cancers, and high TS levels have been correlated with poor prognosis in patients with colorectal, breast, cervical, bladder, kidney, and non-small cell lung cancers. In this study, we show that ectopic expression of catalytically active TS is sufficient to induce a transformed phenotype in mammalian cells as manifested by foci formation, anchorage independent growth, and tumor formation in nude mice. In contrast, comparable levels of two TS mutants carrying single point mutations within the catalytic domain had no transforming activity. In addition, we show that overexpression of TS results in apoptotic cell death following serum removal. These data demonstrate that TS exhibits oncogene-like activity and suggest a link between TS-regulated DNA synthesis and the induction of a neoplastic phenotype.


Asunto(s)
ADN de Neoplasias/biosíntesis , Neoplasias Experimentales/enzimología , Oncogenes/fisiología , Timidilato Sintasa/fisiología , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis , Adhesión Celular/efectos de los fármacos , Transformación Celular Neoplásica , Ensayo de Unidades Formadoras de Colonias , Replicación del ADN , Doxorrubicina/farmacología , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células 3T3 NIH , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/farmacología
17.
Oral Oncol ; 128: 105854, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35447565

RESUMEN

We present 8-year follow-up on the first patient with stage 4 ameloblastoma carrying a BRAF V600E mutation treated with dual BRAF/MEK inhibition (BRAF/MEKi). He experienced a durable clinical response while on dabrafenib (BRAFi) and trametinib (MEKi) without toxicity nor evidence for drug-resistant tumor progression. He was asymptomatic when he self-discontinued therapy after 4 years of sustained clinical response. He did not return for follow-up until 2.5 years later with onset of painful mandibular tumor recurrence associated with recurrent bilateral lung metastases. He was rechallenged with dabrafenib/trametinib and experienced another prompt tumor response and remains in a second durable clinical remission (currently > 16 months) on continuous dual targeted therapy. We discuss the implications of this case study for future treatment strategies.


Asunto(s)
Ameloblastoma , Melanoma , Ameloblastoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Estudios de Seguimiento , Humanos , Masculino , Melanoma/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Piridonas/uso terapéutico
18.
Cancers (Basel) ; 14(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35565402

RESUMEN

Up to 60% of patients with small cell lung cancer (SCLC) continue to smoke, which is associated with worse clinical outcomes. Platinum-based chemotherapies, in combination with topoisomerase inhibitors, are first-line therapies for SCLC, with rapid chemoresistance as a major barrier. We provided evidence in this study that nicotine and its major metabolite, cotinine, at physiologically relevant concentrations, reduced the efficacy of platinum-based chemotherapies and facilitated chemoresistance in SCLC cells. Mechanistically, nicotine or cotinine reduced chemotherapy-induced DNA damage by modulating cellular redox processes, with nAChRs as the upstream targets. Surprisingly, cisplatin treatment alone also increased the levels of nAChRs in SCLC cells, which served as a self-defense mechanism against platinum-based therapies. These discoveries were confirmed in long-term in vitro and in vivo studies. Collectively, our results depicted a novel and clinically important mechanism of chemoresistance in SCLC treatment: nicotine exposure significantly compromises the efficacy of platinum-based chemotherapies in SCLC treatment by reducing therapy-induced DNA damage and accelerating chemoresistance acquisition. The results also emphasized the urgent need for tobacco cessation and the control of NRT use for SCLC management.

19.
J Hematol Oncol ; 15(1): 23, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35260176

RESUMEN

KRAS mutations are the most common oncogenic drivers. Sotorasib (AMG510), a covalent inhibitor of KRASG12C, was recently approved for the treatment of KRASG12C-mutated non-small cell lung cancer (NSCLC). However, the efficacy of sotorasib and other KRASG12C inhibitors is limited by intrinsic resistance in colorectal cancer (CRC) and by the rapid emergence of acquired resistance in all treated tumors. Therefore, there is an urgent need to develop novel combination therapies to overcome sotorasib resistance and to maximize its efficacy. We assessed the effect of sotorasib alone or in combination with DT2216 (a clinical-stage BCL-XL proteolysis targeting chimera [PROTAC]) on KRASG12C-mutated NSCLC, CRC and pancreatic cancer (PC) cell lines using MTS cell viability, colony formation and Annexin-V/PI apoptosis assays. Furthermore, the therapeutic efficacy of sotorasib alone and in combination with DT2216 was evaluated in vivo using different tumor xenograft models. We observed heterogeneous responses to sotorasib alone, whereas its combination with DT2216 strongly inhibited viability of KRASG12C tumor cell lines that partially responded to sotorasib treatment. Mechanistically, sotorasib treatment led to stabilization of BIM and co-treatment with DT2216 inhibited sotorasib-induced BCL-XL/BIM interaction leading to enhanced apoptosis in KRASG12C tumor cell lines. Furthermore, DT2216 co-treatment significantly improved the antitumor efficacy of sotorasib in vivo. Collectively, our findings suggest that due to cytostatic activity, the efficacy of sotorasib is limited, and therefore, its combination with a pro-apoptotic agent, i.e., DT2216, shows synergistic responses and can potentially overcome resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Piperazinas , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas , Pirimidinas
20.
BMJ Open ; 12(6): e064142, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732383

RESUMEN

INTRODUCTION: Lung cancer is the leading cause of cancer death in the USA and worldwide, and lung cancer screening (LCS) with low-dose CT (LDCT) has the potential to improve lung cancer outcomes. A critical question is whether the ratio of potential benefits to harms found in prior LCS trials applies to an older and potentially sicker population. The Personalised Lung Cancer Screening (PLuS) study will help close this knowledge gap by leveraging real-world data to fully characterise LCS recipients. The principal goal of the PLuS study is to characterise the comorbidity burden of individuals undergoing LCS and quantify the benefits and harms of LCS to enable informed decision-making. METHODS AND ANALYSIS: PLuS is a multicentre observational study designed to assemble an LCS cohort from the electronic health records of ~40 000 individuals undergoing annual LCS with LDCT from 2016 to 2022. Data will be integrated into a unified repository to (1) examine the burden of multimorbidity by race/ethnicity, socioeconomic status and age; (2) quantify potential benefits and harms; and (3) use the observational data with validated simulation models in the Cancer Intervention and Surveillance Modeling Network (CISNET) to provide LCS outcomes in the real-world US population. We will fit a multivariable logistic regression model to estimate the adjusted ORs of comorbidity, functional limitations and impaired pulmonary function adjusted for relevant covariates. We will also estimate the cumulative risk of LCS outcomes using discrete-time survival models. To our knowledge, this is the first study to combine observational data and simulation models to estimate the long-term impact of LCS with LDCT. ETHICS AND DISSEMINATION: The study was approved by the Kaiser Permanente Southern California Institutional Review Board and VA Portland Health Care System. The results will be disseminated through publications and presentations at national and international conferences. Safety considerations include protection of patient confidentiality.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares , Enfermedad Crónica , Estudios de Cohortes , Detección Precoz del Cáncer/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/epidemiología , Tamizaje Masivo/métodos , Estudios Multicéntricos como Asunto , Estudios Observacionales como Asunto , Políticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA