Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sensors (Basel) ; 21(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063792

RESUMEN

Electroconductive hydrogels with stimuli-free self-healing and self-recovery (SELF) properties and high mechanical strength for wearable strain sensors is an area of intensive research activity at the moment. Most electroconductive hydrogels, however, consist of static bonds for mechanical strength and dynamic bonds for SELF performance, presenting a challenge to improve both properties into one single hydrogel. An alternative strategy to successfully incorporate both properties into one system is via the use of stiff or rigid, yet dynamic nano-materials. In this work, a nano-hybrid modifier derived from nano-chitin coated with ferric ions and tannic acid (TA/Fe@ChNFs) is blended into a starch/polyvinyl alcohol/polyacrylic acid (St/PVA/PAA) hydrogel. It is hypothesized that the TA/Fe@ChNFs nanohybrid imparts both mechanical strength and stimuli-free SELF properties to the hydrogel via dynamic catecholato-metal coordination bonds. Additionally, the catechol groups of TA provide mussel-inspired adhesion properties to the hydrogel. Due to its electroconductivity, toughness, stimuli-free SELF properties, and self-adhesiveness, a prototype soft wearable strain sensor is created using this hydrogel and subsequently tested.


Asunto(s)
Hidrogeles , Dispositivos Electrónicos Vestibles , Adhesividad , Polisacáridos , Taninos
2.
Macromol Rapid Commun ; 41(23): e2000439, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33174274

RESUMEN

Nature has often been the main source of inspiration for designing smart functional materials. As an example, mussels can attach to almost any wet surfaces, for example, wood, rocks, metal, etc., due to the presence of catechols containing amino acid 3,4-dihydroxyphenyl-l-alanine (DOPA). Fabrication of mussel-inspired hydrogels using dynamic catecholato-metal coordination bonds has recently been in the limelight because of the hydrogels' ease of gelation, interesting self-healing, self-recovery, adhesiveness, and pH-responsiveness, as well as shear-thinning and mechanical properties. Mussel inspired hydrogels take advantage of catechols, for example, DOPA in the blue mussel, to undergo catecholatometal gelation through coordination chemistry. This review explores the latest developments in the fabrication of such hydrogels using catecholato-metal coordination bonds, and discusses their potential applications in sensors, flexible electronics, tissue engineering, and wound dressing. Moreover, current challenges and prospects of such hydrogels are discussed. The main focus of this paper is on providing a deeper understanding of this growing field in terms of chemistry, physics, and associated properties.


Asunto(s)
Bivalvos , Hidrogeles , Animales , Vendajes , Catecoles , Electrónica , Metales
3.
Carbohydr Polym ; 291: 119545, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698375

RESUMEN

Presented here is the synthesis of a 3D printable nano-polysaccharide self-healing hydrogel for flexible strain sensors. Consisting of three distinct yet complementary dynamic bonds, the crosslinked network comprises imine, hydrogen, and catecholato-metal coordination bonds. Self-healing of the hydrogel is demonstrated by macroscopic observation, rheological recovery, and compression measurements. The hydrogel was produced via imine formation of carboxyl methyl chitosan, oxidized cellulose nanofibers, and chitin nanofibers followed by two subsequent crosslinking stages: immersion in tannic acid (TA) solution to create hydrogen bonds, followed by soaking in FeIII solution to form catecholato-metal coordination bonds between TA and FeIII. The metal coordination bonds were critical to imparting conductivity to the hydrogel, a requirement for flexible strain sensors. The hydrogel exhibits excellent shear-thinning and dynamic properties with high autonomous self-healing (up to 89%) and self-recovery (up to 100%) at room temperature without external stimuli. Furthermore, it shows good printability, biocompatibility, and strain sensing ability.


Asunto(s)
Quitosano , Nanofibras , Compuestos Férricos , Hidrogeles/química , Iminas , Nanofibras/química
4.
Soft Robot ; 9(4): 680-689, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34297904

RESUMEN

A compliant three-dimensional (3D)-printed soft gripper is designed based on the bioinspired spiral spring in this study. The soft gripper is then 3D-printed using a suitable thermoplastic filament material to deliver the desired performance. The sensorless mechanism introduced in this study provides adequate compliance with a single linear actuator for interacting with delicate objects, such as manipulation of human biological materials and fruit picking. The kinematic and dynamic models of the monolithic gripper are derived analytically as well as by means of finite element analysis to synthesize its functionality. The fabricated gripper module is installed on a robot arm to demonstrate the efficacy of design for picking and placing fruits without damaging them. The presented mechanism could be customized and used in the medical and agricultural sectors with diverse geometry objects.


Asunto(s)
Robótica , Diseño de Equipo , Análisis de Elementos Finitos , Humanos , Impresión Tridimensional , Robótica/métodos
5.
Materials (Basel) ; 14(3)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498828

RESUMEN

The inhomogeneity of the resistance of conducting polypyrrole-coated nylon-Lycra and polyester (PET) fabrics and its effects on surface temperature were investigated through a systematic experimental and numerical work including the optimization of coating conditions to determine the lowest resistivity conductive fabrics and establish a correlation between the fabrication conditions and the efficiency and uniformity of Joule heating in conductive textiles. For this purpose, the effects of plasma pre-treatment and molar concentration analysis of the dopant anthraquinone sulfonic acid (AQSA), oxidant ferric chloride, and monomer pyrrole was carried out to establish the conditions to determine the sample with the lowest electrical resistance for generating heat and model the experiments using the finite element modeling (FEM). Both PET and nylon-Lycra underwent atmospheric plasma treatment to functionalize the fabric surface to improve the binding of the polymer and obtain coatings with reduced resistance. Both fabrics were compared in terms of average electrical resistance for both plasma treated and untreated samples. The plasma treatment induced deep black coatings with lower resistance. Then, heat-generating experiments were conducted on the polypyrrole (PPy) coated fabrics with the lowest resistance using a variable power supply to study the distribution and maximum value of the temperature. The joule heating model was developed to predict the heating of the conductive fabrics via finite element analysis. The model was based on the measured electrical resistance at different zones of the coated fabrics. It was shown that, when the fabric was backed with neoprene insulation, it would heat up quicker and more evenly. The average electrical resistance of the PPy-PET sample used was 190 Ω, and a maximum temperature reading of 43 °C was recorded. The model results exhibited good agreement with thermal camera data.

6.
Carbohydr Polym ; 270: 118357, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34364602

RESUMEN

Nanocellulose is of great interest in material science nowadays mainly because of its hydrophilic, renewable, biodegradable, and biocompatible nature, as well as its excellent mechanical strength and tailorable surface ready for modification. Currently, nanocellulose is attracting attention to overcome the current challenges of dynamic hydrogels: robustness, autonomous self-healing, and self-recovery (SELF) properties simultaneously occurring in one system. In this regard, this review aims to explore current advances in design and fabrication of dynamic nanocellulose hydrogels and elucidate how incorporating nanocellulose with dynamic motifs simultaneously improves both SELF and robustness of hydrogels. Finally, current challenges and prospects of dynamic nanocellulose hydrogels are discussed.


Asunto(s)
Celulosa/química , Hidrogeles/química , Nanoestructuras/química , Materiales Biocompatibles/química , Humanos , Nanofibras/química , Nanopartículas/química , Resistencia a la Tracción
7.
Polymers (Basel) ; 12(7)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679850

RESUMEN

Recent advances in fabrication techniques have enabled the production of different types of polymer sensors and actuators that can be utilized in a wide range of applications, such as soft robotics, biomedical, smart textiles and energy harvesting [...].

8.
Polymers (Basel) ; 12(6)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481724

RESUMEN

Functional polymers show unique physical and chemical properties, which can manifest asdynamic responses to external stimuli such as radiation, temperature, chemical reaction, external force,and magnetic and electric fields [...].

9.
Polymers (Basel) ; 12(2)2020 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-32024315

RESUMEN

Three-dimensional (3D)-printed parts are an essential subcategory of additive manufacturing with the recent proliferation of research in this area. However, 3D-printed parts fabricated by different techniques differ in terms of microstructure and material properties. Catastrophic failures often occur due to unstable crack propagations and therefore a study of fracture behavior of 3D-printed components is a vital component of engineering design. In this paper, experimental tests and numerical studies of fracture modes are presented. A series of experiments were performed on 3D-printed nylon samples made by fused deposition modeling (FDM) and multi-jet fusion (MJF) to determine the load-carrying capacity of U-notched plates fabricated by two different 3D printing techniques. The equivalent material concept (EMC) was used in conjunction with the J-integral failure criterion to investigate the failure of the notched samples. Numerical simulations indicated that when EMC was combined with the J-integral criterion the experimental results could be predicted successfully for the 3D-printed polymer samples.

10.
Int J Bioprint ; 6(2): 260, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32782990

RESUMEN

Recently, there has been a proliferation of soft robots and actuators that exhibit improved capabilities and adaptability through three-dimensional (3D) bioprinting. Flexibility and shape recovery attributes of stimuli-responsive polymers as the main components in the production of these dynamic structures enable soft manipulations in fragile environments, with potential applications in biomedical and food sectors. Topology optimization (TO), when used in conjunction with 3D bioprinting with optimal design features, offers new capabilities for efficient performance in compliant mechanisms. In this paper, multimaterial TO analysis is used to improve and control the bending performance of a bioprinted soft actuator with electrolytic stimulation. The multimaterial actuator performance is evaluated by the amplitude and rate of bending motion and compared with the single material printed actuator. The results demonstrated the efficacy of multimaterial 3D bioprinting optimization for the rate of actuation and bending.

11.
Polymers (Basel) ; 12(6)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599923

RESUMEN

It is an ongoing challenge to fabricate an electroconductive and tough hydrogel with autonomous self-healing and self-recovery (SELF) for wearable strain sensors. Current electroconductive hydrogels often show a trade-off between static crosslinks for mechanical strength and dynamic crosslinks for SELF properties. In this work, a facile procedure was developed to synthesize a dynamic electroconductive hydrogel with excellent SELF and mechanical properties from starch/polyacrylic acid (St/PAA) by simply loading ferric ions (Fe3+) and tannic acid-coated chitin nanofibers (TA-ChNFs) into the hydrogel network. Based on our findings, the highest toughness was observed for the 1 wt.% TA-ChNF-reinforced hydrogel (1.43 MJ/m3), which is 10.5-fold higher than the unreinforced counterpart. Moreover, the 1 wt.% TA-ChNF-reinforced hydrogel showed the highest resistance against crack propagation and a 96.5% healing efficiency after 40 min. Therefore, it was chosen as the optimized hydrogel to pursue the remaining experiments. Due to its unique SELF performance, network stability, superior mechanical, and self-adhesiveness properties, this hydrogel demonstrates potential for applications in self-wearable strain sensors.

12.
Carbohydr Polym ; 231: 115743, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31888824

RESUMEN

Plant-derived polysaccharides are widely used to fabricate hydrogels because of their ease of gelation and functionalization, plus exceptional biological properties. As an example, nanocellulose is a suitable candidate to fabricate hydrogels for tissue engineering applications due to its enhanced mechanical and biological properties. However, hydrogels are prone to permanent failure whilst under load without the ability to reform their networks once damaged. Recently, considerable efforts are being made to fabricate dynamic hydrogels via installation of reversible crosslinks within their networks. In this paper, we review the developments in the design of dynamic hydrogels from plant-derived polysaccharides, and discuss their applications in tissue engineering, sensors, bioelectronics devices, etc. The main goal of the paper is to elucidate how the network design of hydrogels can influence their dynamic properties: self-healing and self-recovery. Complementary to this, current challenges and prospects of dynamic plant-derived hydrogels are discussed.

13.
Materials (Basel) ; 12(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357393

RESUMEN

Stimuli-responsive polymer systems can be defined as functional materials that show physical or chemical property changes in response to external stimuli, such as temperature, radiation, chemical agents, pH, mechanical stress, and electric and magnetic fields [...].

14.
ACS Biomater Sci Eng ; 5(6): 2688-2707, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33405602

RESUMEN

Developing rationally designed dynamic hydrogels and polymers as inks for 3D printing is in the limelight today. They would enable us to precisely fabricate complex structures in high resolutions and modular platforms with smart functions (e.g., self-healing and self-recovery), as well as tunable mechanical, chemical, and biological properties. In this paper, we explore recent developments in dynamic hydrogels and polymers as inks for 3D printing and discuss their properties and applications in tissue engineering, biomedicine, soft robotics, and sensors. The main scope of the paper is to give a deeper understanding of the field in terms of chemistry, physics, and associated properties. Moreover, the challenges and prospects of hydrogel/polymer inks will be discussed. We envisage that 3D printed dynamic hydrogels and polymers will provide unprecedented opportunities in designing and fabricating smarter structures.

15.
Materials (Basel) ; 12(1)2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30587773

RESUMEN

A new type of soft actuator was developed by using hydrogel materials and three-dimensional (3D) printing technology, attracting the attention of researchers in the soft robotics field. Due to parametric uncertainties of such actuators, which originate in both a custom design nature of 3D printing as well as time and voltage variant characteristics of polyelectrolyte actuators, a sophisticated model to estimate their behaviour is required. This paper presents a practical modeling approach for the deflection of a 3D printed soft actuator. The suggested model is composed of electrical and mechanical dynamic models while the earlier version describes the actuator as a resistive-capacitive (RC) circuit. The latter model relates the ionic charges to the bending of an actuator. The experimental results were acquired to estimate the transfer function parameters of the developed model incorporating Takagi-Sugeno (T-S) fuzzy sets. The proposed model was successful in estimating the end-point trajectory of the actuator, especially in response to a broad range of input voltage variation. With some modifications in the electromechanical aspects of the model, the proposed modelling method can be used with other 3D printed soft actuators.

16.
Sci Rep ; 8(1): 9924, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29967376

RESUMEN

Extrusion processing of carbon tubes can be problematic due to their poor interfacial interactions with polymeric matrices. Surface chemical modification of carbon tubes can be utilized to create bonding sites to form networks with polymer chains. However, chemical reactions resulting in intermolecular primary bonding limit processability of extrudate, since they cause unstable rheological behaviour, and thus decrease the stock holding time, which is determinative in extrusion. This study presents a method for the synthesis of carbon microtubes with physically modified surface area to improve the filler and matrix interfacial interactions. The key concept is the formation of a nanogrooved topography, through acoustic cavitation on the surface of processing fibres. The effect of nanogrooving on roughness parameters is described, along with the role of surface modified carbon tubes on rheological behaviour, homogeneity, and coherency of extrudate. The measurements showed that nanogrooving increases the surface area of carbon microtubes, as a result, die swelling of the extrudate is reduced. Furthermore, after solidification, the mechanical strength of composite is reinforced due to stronger interactions between nanogrooved carbon tubes and polymer matrix.

17.
Materials (Basel) ; 9(7)2016 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-28773729

RESUMEN

Complex permittivity of conducting polypyrrole (PPy)-coated Nylon-Lycra textiles is measured using a free space transmission measurement technique over the frequency range of 1-18 GHz. The aging of microwave dielectric properties and reflection, transmission and absorption for a period of 18 months is demonstrated. PPy-coated fabrics are shown to be lossy over the full frequency range. The levels of absorption are shown to be higher than reflection in the tested samples. This is attributed to the relatively high resistivity of the PPy-coated fabrics. Both the dopant concentration and polymerisation time affect the total shielding effectiveness and microwave aging behaviour. Distinguishing either of these two factors as being exclusively the dominant mechanism of shielding effectiveness is shown to be difficult. It is observed that the PPy-coated Nylon-Lycra samples with a p-toluene sulfonic acid (pTSA) concentration of 0.015 M and polymerisation times of 60 min and 180 min have 37% and 26% decrease in total transmission loss, respectively, upon aging for 72 weeks at room temperature (20 °C, 65% Relative humidity (RH)). The concentration of the dopant also influences the microwave aging behaviour of the PPy-coated fabrics. The samples with a higher dopant concentration of 0.027 mol/L pTSA are shown to have a transmission loss of 32.6% and 16.5% for short and long polymerisation times, respectively, when aged for 72 weeks. The microwave properties exhibit better stability with high dopant concentration and/or longer polymerization times. High pTSA dopant concentrations and/or longer polymerisation times result in high microwave insertion loss and are more effective in reducing the transmission and also increasing the longevity of the electrical properties.

18.
Australas Phys Eng Sci Med ; 38(1): 157-72, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25600671

RESUMEN

A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.


Asunto(s)
Estimulación Encefálica Profunda/instrumentación , Campos Electromagnéticos , Ondas de Radio , Simulación por Computador , Impedancia Eléctrica , Diseño de Equipo
19.
IEEE Trans Nanobioscience ; 13(4): 384-91, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25122838

RESUMEN

Adsorption of target molecules on the immobilized microcantilever surface produced beam displacement due to the differential surface stress generated between the immobilized and non-immobilized surface. Surface stress is caused by the intermolecular forces between the molecules. Van der Waals, electrostatic forces, hydrogen bonding, hydrophobic effect and steric hindrance are some of the intermolecular forces involved. A theoretical framework describing the adsorption-induced microcantilever displacement is derived in this paper. Experimental displacement of thrombin aptamer-thrombin interactions was carried out. The relation between the electrostatic interactions involved between adsorbates (thrombin) as well as adsorbates and substrates (thrombin aptamer) and the microcantilever beam displacement utilizing the proposed mathematical model was quantified and compared to the experimental value. This exercise is important to aid the designers in microcantilever sensing performance optimization.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Sistemas Microelectromecánicos/instrumentación , Modelos Químicos , Trombina/análisis , Trombina/química , Adsorción , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Modelos Moleculares , Estrés Mecánico , Tensión Superficial , Trombina/genética
20.
IEEE Trans Biomed Circuits Syst ; 8(1): 15-24, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24681916

RESUMEN

Biosensors based on microcantilevers convert biological recognition events into measurable mechanical displacements. They offer advantages such as small size, low sample volume, label-free detection, ease of integration, high-throughput analysis, and low development cost. The design and development of a microcantilever-based aptasensor employing SU-8 polymer as the fabrication material is presented in this paper. Aptamers are employed as bioreceptor elements because they exhibit superior specificity compared to antibodies due to their small size and physicochemical stability. To immobilise thrombin DNA aptamer on the bare SU-8 surface of the aptasensor, a combined plasma mode treatment method is implemented which modifies the surface of the aptasensor. Label-free detection of thrombin molecules using the fabricated aptasensor is successfully demonstrated. The measured deflection is one order of magnitude higher than that of a silicon nitride microcantilever biosensor. The developed aptasensor also demonstrates high specificity.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Ácidos Nucleicos Inmovilizados/química , Técnicas Biosensibles/métodos , Microscopía Fluorescente , Sensibilidad y Especificidad , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA