Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(7): 4687-4694, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324275

RESUMEN

The optical response of two-dimensional (2D) perovskites, often referred to as natural quantum wells, is primarily governed by excitons, whose properties can be readily tuned by adjusting the perovskite layer thickness. We have investigated the exciton fine structure splitting in the archetypal 2D perovskite (PEA)2(MA)n-1PbnI3n+1 with varying numbers of inorganic octahedral layers n = 1, 2, 3, and 4. We demonstrate that the in-plane excitonic states exhibit splitting and orthogonally oriented dipoles for all confinement regimes. The evolution of the exciton states in an external magnetic field provides further insights into the g-factors and diamagnetic coefficients. With increasing n, we observe a gradual evolution of the excitonic parameters characteristic of a 2D to three-dimensional transition. Our results provide valuable information concerning the evolution of the optoelectronic properties of 2D perovskites with the changing confinement strength.

2.
Nano Lett ; 23(12): 5617-5624, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37289519

RESUMEN

High light absorption (∼15%) and strong photoluminescence (PL) emission in monolayer (1L) transition metal dichalcogenides (TMDs) make them ideal candidates for optoelectronic device applications. Competing interlayer charge transfer (CT) and energy transfer (ET) processes control the photocarrier relaxation pathways in TMD heterostructures (HSs). In TMDs, long-distance ET can survive up to several tens of nm, unlike the CT process. Our experiment shows that an efficient ET occurs from the 1Ls WSe2-to-MoS2 with an interlayer hexagonal boron nitride (hBN), due to the resonant overlapping of the high-lying excitonic states between the two TMDs, resulting in enhanced HS MoS2 PL emission. This type of unconventional ET from the lower-to-higher optical bandgap material is not typical in the TMD HSs. With increasing temperature, the ET process becomes weaker due to the increased electron-phonon scattering, destroying the enhanced MoS2 emission. Our work provides new insight into the long-distance ET process and its effect on the photocarrier relaxation pathways.

3.
Phys Rev Lett ; 129(6): 067402, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36018658

RESUMEN

Mechanical deformations and ensuing strain are routinely exploited to tune the band gap energy and to enhance the functionalities of two-dimensional crystals. In this Letter, we show that strain leads also to a strong modification of the exciton magnetic moment in WS_{2} monolayers. Zeeman-splitting measurements under magnetic fields up to 28.5 T were performed on single, one-layer-thick WS_{2} microbubbles. The strain of the bubbles causes a hybridization of k-space direct and indirect excitons resulting in a sizable decrease in the modulus of the g factor of the ground-state exciton. These findings indicate that strain may have major effects on the way the valley number of excitons can be used to process binary information in two-dimensional crystals.

4.
Nano Lett ; 21(6): 2519-2525, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33683895

RESUMEN

We investigate the origin of emission lines apparent in the low-temperature photoluminescence spectra of n-doped WS2 monolayer embedded in hexagonal BN layers using external magnetic fields and first-principles calculations. Apart from the neutral A exciton line, all observed emission lines are related to the negatively charged excitons. Consequently, we identify emissions due to both the bright (singlet and triplet) and dark (spin- and momentum-forbidden) negative trions as well as the phonon replicas of the latter optically inactive complexes. The semidark trions and negative biexcitons are distinguished. On the basis of their experimentally extracted and theoretically calculated g-factors, we identify three distinct families of emissions due to exciton complexes in WS2: bright, intravalley, and intervalley dark. The g-factors of the spin-split subbands in both the conduction and valence bands are also determined.

5.
Nano Lett ; 20(5): 3058-3066, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32105481

RESUMEN

Monolayer transition-metal dichalcogenides (TMDs) manifest exceptional optical properties related to narrow excitonic resonances. However, these properties have been so far explored only for structures produced by techniques inducing considerable large-scale inhomogeneity. In contrast, techniques which are essentially free from this disadvantage, such as molecular beam epitaxy (MBE), have to date yielded only structures characterized by considerable spectral broadening, which hinders most of the interesting optical effects. Here, we report for the first time on the MBE-grown TMD exhibiting narrow and resolved spectral lines of neutral and charged exciton. Moreover, our material exhibits unprecedented high homogeneity of optical properties, with variation of the exciton energy as small as ±0.16 meV over a distance of tens of micrometers. Our recipe for MBE growth is presented for MoSe2 and includes the use of atomically flat hexagonal boron nitride substrate. This recipe opens a possibility of producing TMD heterostructures with optical quality, dimensions, and homogeneity required for optoelectronic applications.

6.
Nanotechnology ; 31(21): 215710, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32050170

RESUMEN

Wurtzite CdTe and (Cd,Mn)Te nanowires embedded in (Cd,Mg)Te shells are grown by employing vapour-liquid-solid growth mechanism in a system for molecular beam epitaxy. A combined study involving cathodoluminescence, transmission electron microscopy and micro-photoluminescence is used to correlate optical and structural properties in these structures. Typical features of excitonic emission from individual wurtzite nanowires are highlighted including the emission energy of 1.65 eV, polarization properties and the appearance B-exciton related emission at high excitation densities. Angle dependent magneto-optical study performed on individual (Cd,Mn)Te nanowires reveals heavy-hole-like character of A-excitons typical for wurtzite structure and allows to determine the crystal field splitting, ΔCR. The impact of the strain originating from the lattice mismatched shell is discussed and supported by theoretical calculations.

7.
Nanotechnology ; 29(20): 205205, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29488898

RESUMEN

A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.

9.
J Phys Chem Lett ; 13(20): 4463-4469, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35561248

RESUMEN

Applications of two-dimensional (2D) perovskites have significantly outpaced the understanding of many fundamental aspects of their photophysics. The optical response of 2D lead halide perovskites is dominated by strongly bound excitonic states. However, a comprehensive experimental verification of the exciton fine structure splitting and associated transition symmetries remains elusive. Here we employ low temperature magneto-optical spectroscopy to reveal the exciton fine structure of (PEA)2PbI4 (here PEA is phenylethylammonium) single crystals. We observe two orthogonally polarized bright in-plane free exciton (FX) states, both accompanied by a manifold of phonon-dressed states that preserve the polarization of the corresponding FX state. Introducing a magnetic field perpendicular to the 2D plane, we resolve the lowest energy dark exciton state, which although theoretically predicted, has systematically escaped experimental observation (in Faraday configuration) until now. These results corroborate standard multiband, effective-mass theories for the exciton fine structure in 2D perovskites and provide valuable quantification of the fine structure splitting in (PEA)2PbI4.

10.
Light Sci Appl ; 9: 48, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32257179

RESUMEN

In light science and applications, equally important roles are played by efficient light emitters/detectors and by the optical elements responsible for light extraction and delivery. The latter should be simple, cost effective, broadband, versatile and compatible with other components of widely desired micro-optical systems. Ideally, they should also operate without high-numerical-aperture optics. Here, we demonstrate that all these requirements can be met with elliptical microlenses 3D printed on top of light emitters. Importantly, the microlenses we propose readily form the collected light into an ultra-low divergence beam (half-angle divergence below 1°) perfectly suited for ultra-long-working-distance optical measurements (600 mm with a 1-inch collection lens), which are not accessible to date with other spectroscopic techniques. Our microlenses can be fabricated on a wide variety of samples, including semiconductor quantum dots and fragile van der Waals heterostructures made of novel two-dimensional materials, such as monolayer and few-layer transition metal dichalcogenides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA