Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 50(3): 591-599.e6, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893587

RESUMEN

Immune suppression is a crucial component of immunoregulation and a subgroup of nucleotide-binding domain (NBD), leucine-rich repeat (LRR)-containing proteins (NLRs) attenuate innate immunity. How this inhibitory function is controlled is unknown. A key question is whether microbial ligands can regulate this inhibition. NLRC3 is a negative regulator that attenuates type I interferon (IFN-I) response by sequestering and attenuating stimulator of interferon genes (STING) activation. Here, we report that NLRC3 binds viral DNA and other nucleic acids through its LRR domain. DNA binding to NLRC3 increases its ATPase activity, and ATP-binding by NLRC3 diminishes its interaction with STING, thus licensing an IFN-I response. This work uncovers a mechanism wherein viral nucleic acid binding releases an inhibitory innate receptor from its target.


Asunto(s)
ADN Viral/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Ácidos Nucleicos/metabolismo , Unión Proteica/inmunología
2.
Cell ; 148(3): 421-33, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22304913

RESUMEN

Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca(2+) levels and activates the CamKKß-AMPK pathway via phospholipase C and the ryanodine receptor Ca(2+)-release channel. As a consequence, resveratrol increases NAD(+) and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Envejecimiento/metabolismo , Restricción Calórica , Transducción de Señal , Estilbenos/administración & dosificación , 3',5'-AMP Cíclico Fosfodiesterasas/química , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Dieta , Intolerancia a la Glucosa/prevención & control , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ratones , Modelos Moleculares , Músculo Esquelético/efectos de los fármacos , NAD/metabolismo , Obesidad/prevención & control , Proteínas Quinasas/metabolismo , Resveratrol , Rolipram/administración & dosificación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sirtuina 1/metabolismo
3.
Cell ; 147(1): 223-34, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21962518

RESUMEN

Autophagy is an important intracellular catabolic mechanism that mediates the degradation of cytoplasmic proteins and organelles. We report a potent small molecule inhibitor of autophagy named "spautin-1" for specific and potent autophagy inhibitor-1. Spautin-1 promotes the degradation of Vps34 PI3 kinase complexes by inhibiting two ubiquitin-specific peptidases, USP10 and USP13, that target the Beclin1 subunit of Vps34 complexes. Beclin1 is a tumor suppressor and frequently monoallelically lost in human cancers. Interestingly, Beclin1 also controls the protein stabilities of USP10 and USP13 by regulating their deubiquitinating activities. Since USP10 mediates the deubiquitination of p53, regulating deubiquitination activity of USP10 and USP13 by Beclin1 provides a mechanism for Beclin1 to control the levels of p53. Our study provides a molecular mechanism involving protein deubiquitination that connects two important tumor suppressors, p53 and Beclin1, and a potent small molecule inhibitor of autophagy as a possible lead compound for developing anticancer drugs.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Bencilaminas/farmacología , Endopeptidasas/metabolismo , Quinazolinas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Autofagia , Beclina-1 , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Humanos , Ratones , Proteasas Ubiquitina-Específicas , Ubiquitinación
4.
Med Res Rev ; 44(4): 1404-1445, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38279990

RESUMEN

Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.


Asunto(s)
Enfermedades Neurodegenerativas , Inhibidores de Fosfodiesterasa , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/uso terapéutico , Inhibidores de Fosfodiesterasa/farmacología , Animales , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Bioorg Med Chem Lett ; 30(9): 127097, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32171616

RESUMEN

A series of novel rutaecarpine derivatives were synthesized and subjected to pharmacological evaluation as PDE5 inhibitors. The structure-activity relationships were discussed and their binding conformation and simultaneous interaction mode were further clarified by the molecular docking studies. Among the 25 analogues, compound 8i exhibited most potent PDE5 inhibition with IC50 values about 0.086 µM. Moreover, it also produced good effects against scopolamine-induced cognitive impairment in vivo. These results might bring significant instruction for further development of potential PDE5 inhibitors derived from rutaecarpine as a good candidate drug for the treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Alcaloides Indólicos/química , Inhibidores de Fosfodiesterasa 5/síntesis química , Inhibidores de Fosfodiesterasa 5/farmacología , Quinazolinas/química , Animales , Antagonistas Colinérgicos/toxicidad , Disfunción Cognitiva/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Ratones , Modelos Moleculares , Estructura Molecular , Prueba del Laberinto Acuático de Morris , Inhibidores de Fosfodiesterasa 5/administración & dosificación , Inhibidores de Fosfodiesterasa 5/química , Conformación Proteica , Escopolamina/toxicidad
6.
BMC Plant Biol ; 19(1): 261, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208339

RESUMEN

BACKGROUND: Hydroxycinnamoyl-spermine conjugates (HCSpm) are a class of hydroxycinnamic acid amides (HCAAs), which not only are instrumental in plant development and stress response, but also benefit human health. However, HCSpm are not commonly produced in plants, and the mechanism of their biosynthesis remains unclear. In previous investigations of phenolics in Solanum fruits related to eggplant (Solanum melongena L.), we discovered that Solanum richardii, an African wild relative of eggplant, was rich in HCSpms in fruits. RESULTS: The putative spermine hydroxycinnamoyl transferase (HT) SpmHT was isolated from S. richardii and eggplant. SrSpmHT expression was high in flowers and fruit, and was associated with HCSpm accumulation in S. richardii; however, SpmHT was hardly detected in eggplant cultivars and other wild relatives. Recombinant SpmHT exclusively selected spermine as the acyl acceptor substrate, while showing donor substrate preference in the following order: caffeoyl-CoA, feruloyl-CoA, and p-coumaroyl-CoA. Molecular docking revealed that substrate binding pockets of SpmHT could properly accommodate spermine but not the shorter, more common spermidine. CONCLUSION: SrSpmHT is a novel spermine hydroxycinnamoyl transferase that uses Spm exclusively as the acyl acceptor substrate to produce HCSpms. Our findings shed light on the HCSpm biosynthetic pathway that may allow an increase of health beneficial metabolites in Solanum crops via methods such as introgression or engineering HCAA metabolism.


Asunto(s)
Aciltransferasas/metabolismo , Ácidos Cumáricos/metabolismo , Proteínas de Plantas/metabolismo , Solanum melongena/enzimología , Solanum/enzimología , Espermina/metabolismo , Flores/enzimología , Flores/metabolismo , Frutas/enzimología , Frutas/metabolismo , Redes y Vías Metabólicas , Filogenia , Proteínas de Plantas/genética , Solanum/genética , Solanum/metabolismo , Solanum melongena/genética , Solanum melongena/metabolismo
7.
Bioorg Med Chem Lett ; 29(3): 481-486, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30554955

RESUMEN

Phosphodiesterase 2 (PDE2) has received much attention for the potential treatment of the central nervous system (CNS) disorders. Herein, based on the existing PDE2 inhibitors and their binding modes, a series of purin-6-one derivatives were designed, synthesized and evaluated for PDE2 inhibitory activities, which led to the discovery of the best compounds 6p and 6s with significant inhibitory potency (IC50: 72 and 81 nM, respectively). Docking simulation was performed to insert compound 6s into the crystal structure of PDE2 at the active site to determine the binding mode. Furthermore, compound 6s significantly protected HT-22 cells against corticosterone-induced cytotoxicity and rescued corticosterone-induced decreases in cAMP and cGMP levels. It also produced anxiolytic-like effect in the elevated plus-maze test and exhibited favorable pharmacokinetic properties in vivo. These results might bring significant instruction for further development of potent PDE2 inhibitors.


Asunto(s)
Ansiolíticos/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/antagonistas & inhibidores , Diseño de Fármacos , Fármacos Neuroprotectores/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Purinonas/farmacología , Animales , Ansiolíticos/síntesis química , Ansiolíticos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/química , Purinonas/síntesis química , Purinonas/química , Relación Estructura-Actividad
8.
Biochemistry ; 57(30): 4518-4525, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29975048

RESUMEN

Inhibitors of phosphodiesterases (PDEs) have been widely studied as therapeutics for the treatment of human diseases, but improvement of inhibitor selectivity is still desirable for the enhancement of inhibitor potency. Here, we report identification of a water-containing subpocket as a PDE4-specific pocket for inhibitor binding. We designed against the pocket and synthesized two enantiomers of PDE4 inhibitor Zl-n-91. The ( S)-Zl-n-91 enantiomer showed IC50 values of 12 and 20 nM for the catalytic domains of PDE4D2 and PDE4B2B, respectively, selectivity several thousand-fold greater than those of other PDE families, and potent neuroprotection activities. Crystal structures of the PDE4D2 catalytic domain in complex with each Zl-n-91 enantiomer revealed that ( S)-Zl-n-91 but not ( R)-Zl-n-91 formed a hydrogen bond with the bound water in the pocket, thus explaining its higher affinity. The structural superposition between the PDE families revealed that this water-containing subpocket is unique to PDE4 and thus valuable for the design of PDE4 selective inhibitors.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Diseño de Fármacos , Furanos/química , Furanos/farmacología , Éteres Fenílicos/química , Éteres Fenílicos/farmacología , Inhibidores de Fosfodiesterasa 4/química , Inhibidores de Fosfodiesterasa 4/farmacología , Animales , Sitios de Unión/efectos de los fármacos , Dominio Catalítico/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/química , Furanos/farmacocinética , Humanos , Enlace de Hidrógeno/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones Endogámicos ICR , Simulación del Acoplamiento Molecular , Éteres Fenílicos/farmacocinética , Inhibidores de Fosfodiesterasa 4/farmacocinética , Rolipram/análogos & derivados , Rolipram/farmacocinética , Rolipram/farmacología , Estereoisomerismo , Agua/química
9.
Biochemistry ; 57(42): 6070-6077, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30231198

RESUMEN

The cAMP signaling system plays important roles in the physiological processes of pathogen yeast Candida albicans, but its functional mechanism has not been well illustrated. Here, we report the enzymatic characterization and crystal structures of C. albicans phosphodiesterase 2 (caPDE2) in the unliganded and 3-isobutyl-1-methylxanthine-complexed forms. caPDE2 is a monomer in liquid and crystal states and specifically hydrolyzes cAMP with a KM of 35 nM. It does not effectively hydrolyze cGMP as shown by the 1.32 × 105-fold specificity of cAMP/cGMP. The crystal structure of caPDE2 shows significant differences from those of human PDEs. First, the N-terminal fragment of caPDE2 (residues 1-201) tightly associates with the catalytic domain to form a rigid molecular entity, implying its stable molecular conformation for C. albicans to resist environmental stresses. Second, the M-loop, a critical fragment for binding of the substrate and inhibitors to human PDEs, is not a part of the caPDE2 active site. This feature of caPDE2 may provide a structural basis for the design of selective inhibitors for the treatment of yeast infection.


Asunto(s)
Candida albicans/enzimología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/química , Proteínas Fúngicas/química , Cristalografía por Rayos X , Dominios Proteicos , Estructura Secundaria de Proteína , Relación Estructura-Actividad
10.
J Biol Chem ; 290(20): 12941-50, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25809483

RESUMEN

The oncoprotein murine double minute 2 (MDM2) is an E3 ligase that plays a prominent role in p53 suppression by promoting its polyubiquitination and proteasomal degradation. In its active form, MDM2 forms homodimers as well as heterodimers with the homologous protein murine double minute 4 (MDMX), both of which are thought to occur through their respective C-terminal RING (really interesting new gene) domains. In this study, using multiple MDM2 mutants, we show evidence suggesting that MDM2 homo- and heterodimerization occur through distinct mechanisms because MDM2 RING domain mutations that inhibit MDM2 interaction with MDMX do not affect MDM2 interaction with WT MDM2. Intriguingly, deletion of a portion of the MDM2 central acidic domain selectively inhibits interaction with MDM2 while leaving intact the ability of MDM2 to interact with MDMX and to ubiquitinate p53. Further analysis of an MDM2 C-terminal deletion mutant reveals that the C-terminal residues of MDM2 are required for both MDM2 and MDMX interaction. Collectively, our results suggest a model in which MDM2-MDMX heterodimerization requires the extreme C terminus and proper RING domain structure of MDM2, whereas MDM2 homodimerization requires the extreme C terminus and the central acidic domain of MDM2, suggesting that MDM2 homo- and heterodimers utilize distinct MDM2 domains. Our study is the first to report mutations capable of separating MDM2 homo- and heterodimerization.


Asunto(s)
Modelos Biológicos , Proteínas Nucleares/metabolismo , Multimerización de Proteína/fisiología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular , Línea Celular Tumoral , Humanos , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Eliminación de Secuencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación/fisiología
11.
Mol Pharmacol ; 88(5): 836-45, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26316540

RESUMEN

Phosphodiesterase-9 (PDE9) inhibitors have been studied as potential therapeutics for treatment of central nervous system diseases and diabetes. Here, we report the discovery of a new category of PDE9 inhibitors by rational design on the basis of the crystal structures. The best compound, (S)-6-((1-(4-chlorophenyl)ethyl)amino)-1-cyclopentyl-1,5,6,7-tetrahydro-4H-pyrazolo[3,4-day]pyrimidin-4-one [(S)-C33], has an IC50 value of 11 nM against PDE9 and the racemic C33 has bioavailability of 56.5% in the rat pharmacokinetic model. The crystal structures of PDE9 in the complex with racemic C33, (R)-C33, and (S)-C33 reveal subtle conformational asymmetry of two M-loops in the PDE9 dimer and different conformations of two C33 enantiomers. The structures also identified a small hydrophobic pocket that interacts with the tyrosyl tail of (S)-C33 but not with (R)-C33, and is thus possibly useful for improvement of selectivity of PDE9 inhibitors. The asymmetry of the M-loop and the different interactions of the C33 enantiomers imply the necessity to consider the whole PDE9 dimer in the design of inhibitors.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , 3',5'-AMP Cíclico Fosfodiesterasas/química , Inhibidores de Fosfodiesterasa/química , Secuencia de Aminoácidos , Animales , Disponibilidad Biológica , Diseño de Fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Datos de Secuencia Molecular , Inhibidores de Fosfodiesterasa/farmacocinética , Multimerización de Proteína , Ratas , Ratas Sprague-Dawley , Estereoisomerismo
12.
Biochemistry ; 53(30): 4938-45, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25050706

RESUMEN

Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a KM of 110 µM and a kcat of 16.9 s(-1) for cAMP and a KM of 105 µM and a kcat of 11.8 s(-1) for cGMP. Thus, the specificity constant (kcat/KM(cAMP))/(kcat/KM(cGMP)) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMP at 1.31 Å resolution reveal a new structural folding that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-ß-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP.


Asunto(s)
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Sistemas de Mensajero Secundario/fisiología , AMP Cíclico/química , GMP Cíclico/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/química , Humanos , Hidrólisis , Unión Proteica/fisiología , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato
13.
J Biol Chem ; 287(15): 11788-97, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22356915

RESUMEN

Trypanosoma cruzi phosphodiesterase C (TcrPDEC) is a potential new drug target for the treatment of Chagas disease but has not been well studied. This study reports the enzymatic properties of various kinetoplastid PDECs and the crystal structures of the unliganded TcrPDEC1 catalytic domain and its complex with an inhibitor. Mutations of PDEC during the course of evolution led to inactivation of PDEC in Trypanosoma brucei/Trypanosoma evansi/Trypanosoma congolense, whereas the enzyme is active in all other kinetoplastids. The TcrPDEC1 catalytic domain hydrolyzes both cAMP and cGMP with a K(m) of 23.8 µm and a k(cat) of 31 s(-1) for cAMP and a K(m) of 99.1 µm and a k(cat) of 17 s(-1) for cGMP, thus confirming its dual specificity. The crystal structures show that the N-terminal fragment wraps around the TcrPDEC catalytic domain and may thus regulate its enzymatic activity via direct interactions with the active site residues. A PDE5 selective inhibitor that has an IC(50) of 230 nm for TcrPDEC1 binds to TcrPDEC1 in an orientation opposite to that of sildenafil. This observation, together with the screen of the inhibitory potency of human PDE inhibitors against TcrPDEC, implies that the scaffold of some human PDE inhibitors might be used as the starting model for design of parasite PDE inhibitors. The structural study also identified a unique parasite pocket that neighbors the active site and may thus be valuable for the design of parasite-specific inhibitors.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Inhibidores de Fosfodiesterasa/química , Hidrolasas Diéster Fosfóricas/química , Proteínas Protozoarias/química , Sulfonamidas/química , Trypanosoma cruzi/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Diseño de Fármacos , Cinética , Datos de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/biosíntesis , Hidrolasas Diéster Fosfóricas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Propiedades de Superficie
14.
Antimicrob Agents Chemother ; 56(10): 5157-63, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22825119

RESUMEN

New Delhi metallo-ß-lactamase 1 (NDM-1) is a key enzyme that the pathogen Klebsiella pneumonia uses to hydrolyze almost all ß-lactam antibiotics. It is currently unclear why NDM-1 has a broad spectrum of activity. Docking of the representatives of the ß-lactam families into the active site of NDM-1 is reported here. All the ß-lactams naturally fit the NDM-1 pocket, implying that NDM-1 can accommodate the substrates without dramatic conformation changes. The docking reveals two major binding modes of the ß-lactams, which we tentatively name the S (substrate) and I (inhibitor) conformers. In the S conformers of all the ß-lactams, the amide oxygen and the carboxylic group conservatively interact with two zinc ions, while the substitutions on the fused rings show dramatic differences in their conformations and positions. Since the bridging hydroxide ion/water in the S conformer is at the position for the nucleophilic attack, the S conformation may simulate the true binding of a substrate to NDM-1. The I conformer either blocks or displaces the bridging hydroxide ion/water, such as in the case of aztreonam, and is thus inhibitory. The docking also suggests that substitutions on the ß-lactam ring are required for ß-lactams to bind in the S conformation, and therefore, small ß-lactams such as clavulanic acid would be inhibitors of NDM-1. Finally, our docking shows that moxalactam uses its tyrosyl-carboxylic group to compete with the S conformer and would thus be a poor substrate of NDM-1.


Asunto(s)
Klebsiella pneumoniae/enzimología , beta-Lactamasas/química , beta-Lactamasas/metabolismo , beta-Lactamas/metabolismo , beta-Lactamas/farmacología , Dominio Catalítico , Ácido Clavulánico/metabolismo , Ácido Clavulánico/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Moxalactam/metabolismo , Moxalactam/farmacología , Unión Proteica , Conformación Proteica , beta-Lactamasas/genética
15.
J Biol Chem ; 285(49): 38149-56, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20861010

RESUMEN

The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.


Asunto(s)
GMP Cíclico/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/química , Transducción de Señal/fisiología , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Humanos , Fosforilación/fisiología , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
16.
Handb Exp Pharmacol ; (204): 121-34, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695637

RESUMEN

Cyclic nucleotide phosphodiesterases (PDEs) share a highly conserved catalytic domain that hydrolyzes cAMP, cGMP, or both nucleotides. However, the mechanism that allows the PDE catalytic sites to specifically recognize these nucleotides and distinguish between their subtle differences is still unclear. An early model, called the "glutamine switch", proposed that the side chain of an invariant glutamine adopts two different conformations to allow for formation of two hydrogen bonds with cAMP and cGMP, thereby differentiating these nucleotides. However, the structure of PDE4D2 in complex with cAMP shows that Gln369 forms only one hydrogen bond with the substrate. In addition, the structures of PDE10A in complex with cAMP and cGMP reveal that cAMP and cGMP bind to the active site in different orientations and have different interactions with PDE10A residues. These structures suggest that the invariant glutamine does not appear to be a key residue to differentiate between cAMP and cGMP, although it is important for substrate binding. The structure-based sequence alignment shows that most of the active site residues change across PDE families. These residues may not only contribute differently to the substrate specificity, but also generate slightly different shapes and sizes of the active sites in different PDE families. Therefore, the substrate specificity of PDEs is likely to be determined jointly by multiple elements at the active site, yet the detailed mechanism needs further study.


Asunto(s)
GMP Cíclico/química , Hidrolasas Diéster Fosfóricas/química , Animales , Sitios de Unión , AMP Cíclico/química , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Especificidad por Sustrato
17.
Handb Exp Pharmacol ; (200): 93-133, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20859794

RESUMEN

Naturally occurring methylxanthines were the first inhibitors of cyclic nucleotide (cN) phosphodiesterases (PDEs) to be discovered. To improve potency and specificity for inhibition of various PDEs in research and for treatment of diseases, thousands of compounds with related structures have now been synthesized. All known PDE inhibitors contain one or more rings that mimic the purine in the cN substrate and directly compete with cN for access to the catalytic site; this review focuses on inhibitors that contain a nucleus that is closely related to the xanthine ring of theophylline and caffeine and the purine ring of cNs. The specificity and potency of these compounds for blocking PDE action have been improved by appending groups at positions on the rings as well as by modification of the number and distribution of nitrogens and carbons in those rings. Several of these inhibitors are highly selective for particular PDEs; potent and largely selective PDE5 inhibitors are used clinically for treatment of erectile dysfunction [sildenafil (Viagra™), tadalafil (Cialis™) and vardenafil (Levitra™)] and pulmonary hypertension [sildenafil (Revatio™) and tadalafil (Adenocirca)]. Related compounds target other PDEs and show therapeutic promise for a number of maladies.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , 3',5'-GMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Inhibidores de Fosfodiesterasa/farmacología , Xantinas/farmacología , Animales , Cafeína/farmacología , Dominio Catalítico , Diseño de Fármacos , Humanos , Teofilina/farmacología
18.
Handb Exp Pharmacol ; (204): 487-510, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695653

RESUMEN

Protozoan parasites of the order kinetoplastida are the causative agents of three of the world's most important neglected human diseases: African trypanosomiasis, American trypanosomiasis, and leishmaniasis. Current therapies are limited, with some treatments having serious and sometimes lethal side effects. The growing number of cases that are refractory to treatment is also of concern. With few new drugs in development, there is an unmet medical need for new, more effective, and safer medications. Recent studies employing genetic and pharmacological techniques have begun to shed light on the role of the cyclic nucleotide phosphodiesterases in the life cycle of these pathogens and suggest that these important regulators of cyclic nucleotide signaling may be promising new targets for the treatment of parasitic diseases.


Asunto(s)
Leishmaniasis/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/uso terapéutico , Tripanosomiasis/tratamiento farmacológico , Animales , Cristalización , Humanos , Kinetoplastida/enzimología , Leishmaniasis/enzimología , Nucleótidos Cíclicos/fisiología , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/fisiología , Transducción de Señal/fisiología , Tripanosomiasis/enzimología
19.
Biochemistry ; 49(43): 9280-91, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20839809

RESUMEN

PDZ (PSD95/Discs large/ZO-1) domains are ubiquitous protein interaction motifs found in scaffolding proteins involved in signal transduction. Despite the fact that many PDZ domains show a limited tendency to undergo structural change, the PDZ family has been associated with long-range communication and allostery. One of the PDZ domains studied most in terms of structure and biophysical properties is the second PDZ ("PDZ2") domain from protein tyrosine phosphatase 1E (PTP1E, also known as PTPL1). Previously, we showed through NMR relaxation studies that binding of the RA-GEF2 C-terminal peptide substrate results in long-range propagation of side-chain dynamic changes in human PDZ2 [Fuentes, E. J., et al. (2004) J. Mol. Biol. 335, 1105-1115]. Here, we present the first X-ray crystal structures of PDZ2 in the absence and presence of RA-GEF2 ligand, determined to resolutions of 1.65 and 1.3 Å, respectively. These structures deviate somewhat from previously determined NMR structures and indicate that very minor structural changes in PDZ2 accompany peptide binding. NMR residual dipolar couplings confirm the crystal structures to be accurate models of the time-averaged atomic coordinates of PDZ2. The impact on side-chain dynamics was further tested with a C-terminal peptide from APC, which showed results nearly identical to those of RA-GEF2. Thus, allosteric transmission in PDZ2 induced by peptide binding is conveyed purely and robustly by dynamics. (15)N relaxation dispersion measurements did not detect appreciable populations of a kinetic structural intermediate. Collectively, for ligand binding to PDZ2, these data support a lock-and-key binding model from a structural perspective and an allosteric model from a dynamical perspective, which together suggest a complex energy landscape for functional transitions within the ensemble.


Asunto(s)
Dominios PDZ , Péptidos/química , Proteína Tirosina Fosfatasa no Receptora Tipo 13/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Péptidos/metabolismo , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 13/metabolismo
20.
Structure ; 16(12): 1799-805, 2008 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19081056

RESUMEN

The de novo design of globular beta sheet proteins remains largely an unsolved problem. It is unclear whether most designs are failing because the designed sequences do not have favorable energies in the target conformations or whether more emphasis should be placed on negative design, that is, explicitly identifying sequences that have poor energies when adopting undesired conformations. We tested whether we could redesign the sequence of a naturally occurring beta sheet protein, tenascin, with a design algorithm that does not include explicit negative design. Denaturation experiments indicate that the designs are significantly more stable than the wild-type protein and the crystal structure of one design closely matches the design model. These results suggest that extensive negative design is not required to create well-folded beta sandwich proteins. However, it is important to note that negative design elements may be encoded in the conformation of the protein backbone which was preserved from the wild-type protein.


Asunto(s)
Biología Computacional/métodos , Estructura Secundaria de Proteína , Proteínas/química , Algoritmos , Secuencia de Aminoácidos , Fenómenos Biofísicos , Simulación por Computador , Computadores , Secuencia Conservada , Cristalografía por Rayos X , Guanidina/farmacología , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Desnaturalización Proteica/efectos de los fármacos , Pliegue de Proteína , Estabilidad Proteica , Proteínas/genética , Temperatura , Tenascina/química , Tenascina/genética , Tenascina/aislamiento & purificación , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA