Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 45(4): 802-816, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27692610

RESUMEN

Reciprocal interactions between the metabolic system and immune cells play pivotal roles in diverse inflammatory diseases, but the underlying mechanisms remain elusive. The activation of bile acid-mediated signaling has been linked to improvement in metabolic syndromes and enhanced control of inflammation. Here, we demonstrated that bile acids inhibited NLRP3 inflammasome activation via the TGR5-cAMP-PKA axis. TGR5 bile acid receptor-induced PKA kinase activation led to the ubiquitination of NLRP3, which was associated with the PKA-induced phosphorylation of NLRP3 on a single residue, Ser 291. Furthermore, this PKA-induced phosphorylation of NLRP3 served as a critical brake on NLRP3 inflammasome activation. In addition, in vivo results indicated that bile acids and TGR5 activation blocked NLRP3 inflammasome-dependent inflammation, including lipopolysaccharide-induced systemic inflammation, alum-induced peritoneal inflammation, and type-2 diabetes-related inflammation. Altogether, our study unveils the PKA-induced phosphorylation and ubiquitination of NLRP3 and suggests TGR5 as a potential target for the treatment of NLRP3 inflammasome-related diseases.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Enfermedades Metabólicas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Línea Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Fosforilación/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología
2.
Arterioscler Thromb Vasc Biol ; 44(1): 202-217, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942607

RESUMEN

BACKGROUND: Macrophages have versatile roles in atherosclerosis. SHP2 (Src homology 2 containing protein tyrosine phosphatase 2) has been demonstrated to play a critical role in regulating macrophage activation. However, the mechanism of SHP2 regulation of macrophage function in an atherosclerotic microenvironment remains unknown. METHODS: APOE (apolipoprotein E) or LDLR (low-density lipoprotein receptor) null mice treated with SHP099 were fed a Western diet for 8 weeks, while Shp2MKO:ApoE-/- or Shp2MKO:Ldlr-/- mice and exo-AAV8-SHP2E76K/ApoE-/- mice were fed a Western diet for 12 weeks. In vitro, levels of proinflammatory factors and phagocytic function were then studied in mouse peritoneal macrophages. RNA sequencing was used to identify PPARγ (peroxisome proliferative activated receptor γ) as the key downstream molecule. A PPARγ agonist was used to rescue the phenotypes observed in SHP2-deleted mice. RESULTS: Pharmacological inhibition and selective deletion in macrophages of SHP2 aggravated atherosclerosis in APOE and LDLR null mice with increased plaque macrophages and apoptotic cells. In vitro, SHP2 deficiency in APOE and LDLR null macrophages enhanced proinflammatory polarization and its efferocytosis was dramatically impaired. Conversely, the expression of gain-of-function mutation of SHP2 in mouse macrophages reduced atherosclerosis. The SHP2 agonist lovastatin repressesed macrophage inflammatory activation and enhanced efferocytosis. Mechanistically, RNA sequencing analysis identified PPARγ as a key downstream transcription factor. PPARγ was decreased in macrophages upon SHP2 deletion and inhibition. Importantly, PPARγ agonist decreased atherosclerosis in SHP2 knockout mice, restored efferocytotic defects, and reduced inflammatory activation in SHP2 deleted macrophages. PPARγ was decreased by the ubiquitin-mediated degradation upon SHP2 inhibition or deletion. Finally, we found that SHP2 was downregulated in atherosclerotic vessels. CONCLUSIONS: Overall, SHP2 in macrophages was found to act as an antiatherosclerotic regulator by stabilizing PPARγ in APOE/LDLR null mice.


Asunto(s)
Aterosclerosis , PPAR gamma , Animales , Ratones , Apolipoproteínas E , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/metabolismo
3.
Biochem Biophys Res Commun ; 607: 36-43, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35366541

RESUMEN

Anaplastic thyroid carcinoma (ATC) represents an undifferentiated, aggressive and highly metastatic form of thyroid cancer with high mortality. GAB1, through direct interaction with the kinase PI3K and phosphatase SHP2, is tightly involved in the activation of oncogenic signals; however, the role of GAB1 in ATC remains unclear. GAB1 was significantly increased in ATC, accompanied with AKT activation. Cell proliferation, migration and invasion were impaired or enhanced by GAB1 knockdown in ATC cells or overexpression in PTC cells. Moreover, GAB1 knockdown in ATC cells inhibited and overexpression in PTC cells promoted the growth of thyroid cancer in nude mice. GAB1 mutation disrupting the interaction between GAB1 and PI3K failed to restore cell migration and invasion in GAB1-knockdown ATC cells. RNA sequencing data showed GAB1-knockdown partially reprogramed gene expression in ATC cells back to that in normal thyroid cells. MDR1 was transcriptionally regulated by GAB1, which was mediated by AKT. MDR1 was upregulated in ATC cells and MDR1 knockdown in ATC cells decreased migration and invasion. In addition, MDR1 overexpression restored cell migration and invasion and lung metastasis of GAB1-knockdown ATC cells. Collectively, GAB1 is upregulated in ATC to promote AKT activation and cellular migration and invasion through regulating MDR1 expression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Ratones , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/patología
4.
J Biol Chem ; 295(40): 13798-13811, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32737199

RESUMEN

Transforming growth factor ß (TGFß) signaling plays an important role in regulating tumor malignancy, including in non-small cell lung cancer (NSCLC). The major biological responses of TGFß signaling are determined by the effector proteins SMAD2 and SMAD3. However, the regulators of TGFß-SMAD signaling are not completely revealed yet. Here, we showed that the scaffolding protein PDLIM5 (PDZ and LIM domain protein 5, ENH) critically promotes TGFß signaling by maintaining SMAD3 stability in NSCLC. First, PDLIM5 was highly expressed in NSCLC compared with that in adjacent normal tissues, and high PDLIM5 expression was associated with poor outcome. Knockdown of PDLIM5 in NSCLC cells decreased migration and invasion in vitro and lung metastasis in vivo In addition, TGFß signaling and TGFß-induced epithelial-mesenchymal transition was repressed by PDLIM5 knockdown. Mechanistically, PDLIM5 knockdown resulted in a reduction of SMAD3 protein levels. Overexpression of SMAD3 reversed the TGFß-signaling-repressing and anti-migration effects induced by PDLIM5 knockdown. Notably, PDLIM5 interacted with SMAD3 but not SMAD2 and competitively suppressed the interaction between SMAD3 and its E3 ubiquitin ligase STUB1. Therefore, PDLIM5 protected SMAD3 from STUB1-mediated proteasome degradation. STUB1 knockdown restored SMAD3 protein levels, cell migration, and invasion in PDLIM5-knockdown cells. Collectively, our findings indicate that PDLIM5 is a novel regulator of basal SMAD3 stability, with implications for controlling TGFß signaling and NSCLC progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular , Proteínas con Dominio LIM/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Proteolisis , Proteína smad3/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Humanos , Proteínas con Dominio LIM/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Ratones Desnudos , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Proteína smad3/genética , Ubiquitina-Proteína Ligasas/genética
5.
Arterioscler Thromb Vasc Biol ; 40(7): 1705-1721, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268790

RESUMEN

OBJECTIVE: A decrease in nitric oxide, leading to vascular smooth muscle cell proliferation, is a common pathological feature of vascular proliferative diseases. Nitric oxide synthesis by eNOS (endothelial nitric oxide synthase) is precisely regulated by protein kinases including AKT1. ENH (enigma homolog protein) is a scaffolding protein for multiple protein kinases, but whether it regulates eNOS activation and vascular remodeling remains unknown. Approach and Results: ENH was upregulated in injured mouse arteries and human atherosclerotic plaques and was associated with coronary artery disease. Neointima formation in carotid arteries, induced by ligation or wire injury, was greatly decreased in endothelium-specific ENH-knockout mice. Vascular ligation reduced AKT and eNOS phosphorylation and nitric oxide production in the endothelium of control but not ENH-knockout mice. ENH was found to interact with AKT1 and its phosphatase PHLPP2 (pleckstrin homology domain and leucine-rich repeat protein phosphatase 2). AKT and eNOS activation were prolonged in VEGF (vascular endothelial growth factor)-induced ENH- or PHLPP2-deficient endothelial cells. Inhibitors of either AKT or eNOS effectively restored ligation-induced neointima formation in ENH-knockout mice. Moreover, endothelium-specific PHLPP2-knockout mice displayed reduced ligation-induced neointima formation. Finally, PHLPP2 was increased in the endothelia of human atherosclerotic plaques and blood cells from patients with coronary artery disease. CONCLUSIONS: ENH forms a complex with AKT1 and its phosphatase PHLPP2 to negatively regulate AKT1 activation in the artery endothelium. AKT1 deactivation, a decrease in nitric oxide generation, and subsequent neointima formation induced by vascular injury are mediated by ENH and PHLPP2. ENH and PHLPP2 are thus new proatherosclerotic factors that could be therapeutically targeted.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Traumatismos de las Arterias Carótidas/enzimología , Arteria Carótida Común/enzimología , Proteínas de Microfilamentos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Remodelación Vascular , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Aterosclerosis/enzimología , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/fisiopatología , Arteria Carótida Común/patología , Arteria Carótida Común/fisiopatología , Células Cultivadas , Enfermedad de la Arteria Coronaria/enzimología , Enfermedad de la Arteria Coronaria/patología , Enfermedad de la Arteria Coronaria/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/deficiencia , Proteínas de Microfilamentos/genética , Neointima , Óxido Nítrico/metabolismo , Fosfoproteínas Fosfatasas/deficiencia , Fosfoproteínas Fosfatasas/genética , Fosforilación , Transducción de Señal
6.
Exp Cell Res ; 394(2): 112101, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32474064

RESUMEN

Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) are common lung disorders characterized by alveolar-capillary barrier disruption and dyspnea, which can cause substantial morbidity and mortality. Currently, a cluster of acute respiratory illnesses, known as novel coronavirus (2019-nCoV)-infected pneumonia (NCIP), which allegedly originally occurred in Wuhan, China, has increased rapidly worldwide. The critically ill patients with ARDS have high mortality in subjects with comorbidities. Previously, the excessive recruitment and activation of neutrophils (polymorphonuclear leukocytes [PMNs]), accompanied by neutrophil extracellular traps (NETs) formation were reported being implicated in the pathogenesis of ALI/ARDS. However, the direct visualization of lung epithelial injuries caused by NETs, and the qualitative and quantitative evaluations of this damage are still lacking. Additionally, those already reported methods are limited for their neglect of the pathological role exerted by NETs and focusing only on the morphological features of NETosis. Therefore, we established a cell-based assay for detecting NETs during lung epithelial cells-neutrophils co-culture using the xCELLigence system, a recognized real-time, dynamic, label-free, sensitive, and high-throughput apparatus. Our results demonstrated that lung epithelial injuries, reflected by declines in cell index (CI) values, could be induced by lipopolysaccharide (LPS)-activated PMNs, or NETs in a time and dose-dependent manner. NETs generation was verified to be the major contributor to the cytotoxicity of activated PMNs; protein components of NETs were the prevailing cytotoxic mediators. Moreover, this cell-based assay identified that PMNs from severe pneumonia patients had a high NETs formative potential. Additionally, acetylsalicylic acid (ASA) and acetaminophen (APAP) were discovered alleviating NETs formation. Thus, this study not only presents a new methodology for detecting the pathophysiologic role of NETs but also lays down a foundation for exploring therapeutic interventions in an effort to cure ALI/ARDS in the clinical setting of severe pneumonia, including the emerging of NCIP.


Asunto(s)
Lesión Pulmonar Aguda/sangre , Infecciones por Coronavirus/sangre , Trampas Extracelulares/diagnóstico por imagen , Neutrófilos/metabolismo , Neumonía Viral/sangre , Síndrome de Dificultad Respiratoria/sangre , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/diagnóstico por imagen , Lesión Pulmonar Aguda/virología , Animales , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/diagnóstico por imagen , Infecciones por Coronavirus/virología , Células Epiteliales/patología , Células Epiteliales/virología , Trampas Extracelulares/virología , Humanos , Lipopolisacáridos/toxicidad , Pulmón/diagnóstico por imagen , Pulmón/virología , Masculino , Neutrófilos/virología , Pandemias , Neumonía/sangre , Neumonía/diagnóstico por imagen , Neumonía/virología , Neumonía Viral/diagnóstico por imagen , Neumonía Viral/virología , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2
7.
FASEB J ; 33(1): 1124-1137, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30102570

RESUMEN

Vascular endothelial (VE)-cadherin junctional localization is known to play a central role in vascular development, endothelial barrier integrity, and homeostasis. The sarcoma homology domain containing protein tyrosine phosphatase (SHP)2 has been shown to be involved in regulating endothelial barrier function; however, the mechanisms remain largely unknown. In this work SHP2 knockdown in an HUVEC monolayer increased VE-cadherin internalization and endothelial barrier permeability. Loss of SHP2 specifically augmented the GTPase activity of ADP-ribosylation factor (ARF)-1. ARF1 knockdown or inhibition of its guanine nucleotide exchange factors (GEFs) markedly attenuated VE-cadherin internalization and barrier hyperpermeability induced by SHP2 deficiency. SHP2 knockdown increased the total and phosphorylated levels of MET, whose activity was necessary for ARF1 activation and VE-cadherin internalization. Furthermore, constitutive endothelium-specific deletion of Shp2 in mice led to disrupted endothelial cell junctions, massive hemorrhage, and lethality in embryos. Induced and endothelium-specific deletion of Shp2 in adult mice resulted in lung hyperpermeability. Inhibitors for ARF1-GEF or MET used in pregnant mice prevented the vascular leakage in endothelial Shp2-deleted embryos. Together, our findings define a novel role of SHP2 in stabilizing junctional VE-cadherin in the resting endothelial barrier through suppressing MET and ARF1 activation.-Zhang, J., Huang, J., Qi, T., Huang, Y., Lu, Y., Zhan, T., Gong, H., Zhu, Z., Shi, Y., Zhou, J., Yu, L., Zhang, X., Cheng, H., Ke, Y. SHP2 protects endothelial cell barrier through suppressing VE-cadherin internalization regulated by MET-ARF1.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Endotelio Vascular/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Endocitosis , Endotelio Vascular/citología , Femenino , Genes Letales , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hemorragia/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Uniones Intercelulares/metabolismo , Masculino , Ratones , Ratones Noqueados , Embarazo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Transducción de Señal
9.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 49(5): 623-628, 2020 Oct 25.
Artículo en Zh | MEDLINE | ID: mdl-33210491

RESUMEN

Radiation-induced lung injury (RILI), including acute radiation pneumonitis and chronic radiation-induced pulmonary fibrosis (RIPF), is a side effect of radiotherapy for lung cancer and esophageal cancer. Pulmonary macrophages, as a kind of natural immune cells maintaining lung homeostasis, play a key role in the whole pathological process of RILI. In the early stage of RILI, classically activated M1 macrophages secrete proinflammatory cytokines to induce inflammation and produce massive reactive oxygen species (ROS) through ROS-induced cascade to further impair lung tissue. In the later stage of RILI, alternatively activated M2 macrophages secrete profibrotic cytokines to promote the development of RIPF. The roles of macrophage in the pathogenesis of RILI and the related potential clinical applications are summarized in this review.


Asunto(s)
Lesión Pulmonar , Pulmón , Macrófagos , Traumatismos por Radiación , Radioterapia , Humanos , Pulmón/efectos de la radiación , Lesión Pulmonar/etiología , Lesión Pulmonar/fisiopatología , Macrófagos/metabolismo , Neumonitis por Radiación/etiología , Radioterapia/efectos adversos
10.
J Mol Cell Cardiol ; 137: 71-81, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31634485

RESUMEN

Mutations in the PTPN11 gene, which encodes the protein tyrosine phosphatase Shp2, cause Noonan syndrome and LEOPARD syndrome, inherited multifaceted diseases including cardiac and vascular defects. However, the function of Shp2 in blood vessels, especially in vascular smooth muscle cells (VSMCs), remains largely unknown. We generated mice in which Shp2 was specifically deleted in VSMCs and embryonic cardiomyocytes using the SM22α-Cre transgenic mouse line. Conditional Shp2 knockout resulted in massive hemorrhage, cardiovascular defects and embryonic lethality at the late embryonic developmental stage (embryonic date 16.5). The thinning of artery walls in Shp2-knockout embryos was due to decreased VSMC number and reduced extracellular matrix deposition. Myocyte proliferation was decreased in Shp2-knockout arteries and hearts. Importantly, cardiomyocyte-specific Shp2-knockout did not cause similar vascular defects. Shp2 was required for TGFß1-induced expression of ECM components, including collagens in VSMCs. In addition, collagens were sufficient to promote Shp2-inefficient VSMC proliferation. Finally, Shp2 was deleted in adult mouse VSMCs by using SMMHC-CreERT2 and tamoxifen induction. Shp2 deletion dramatically inhibited the expression of ECM components, proliferation of VSMCs and neointima formation in a carotid artery ligation model. Therefore, Shp2 is required for myocyte proliferation in cardiovascular development and vascular remodeling through TGFß1-regulated collagen synthesis.


Asunto(s)
Corazón/embriología , Miocitos del Músculo Liso/enzimología , Neointima/embriología , Neointima/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/embriología , Arterias Carótidas/patología , Proliferación Celular/efectos de los fármacos , Colágeno/farmacología , Ciclina D1/metabolismo , Embrión de Mamíferos/patología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Femenino , Hemorragia/patología , Integrasas/metabolismo , Masculino , Ratones Noqueados , Músculo Liso Vascular/patología , Miocardio/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/deficiencia , Ratas , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
11.
J Immunol ; 199(7): 2323-2332, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28814604

RESUMEN

Persistent activation of macrophages in lungs plays a critical role in the production of matrix metalloproteinases (MMPs) that contributes to the destruction of alveolar walls, a hallmark for pulmonary emphysema. Dysregulated TGF-ß1 signaling has been an essential determinant in the elevation of MMPs during the development of emphysema. Nevertheless, the mechanism for this MMP-dependent pathogenesis has yet to be clearly investigated. Recently, we identified an important role for tyrosine phosphatase Src homology domain-containing protein tyrosine phosphatase 2 (Shp2) in regulating the activation of alveolar macrophages. Over a long-term observation period, mice with Shp2 deletion in macrophages (LysMCre:Shp2fl/fl ) develop spontaneous, progressive emphysema-like injury in the lungs, characterized by massive destruction of alveolar morphology, interstitial extracellular matrix degradation, and elevated levels of MMPs, particularly, significant increases of macrophage elastase (MMP12) in aged mice. Further analysis demonstrated that MMP12 suppression by TGF-ß1 activation was apparently abrogated in LysMCre:Shp2fl/fl mice, whereas the TGF-ß1 concentration in the lungs was relatively the same. Mechanistically, we found that loss of Shp2 resulted in attenuated SMAD2/3 phosphorylation and nuclear translocation in response to TGF-ß activation, thereby upregulating MMP12 expression in macrophages. Together, our findings define a novel physiological function of Shp2 in TGF-ß1/MMP12-dependent emphysema, adding insights into potential etiologies for this chronic lung disorder.


Asunto(s)
Activación de Macrófagos , Metaloproteinasa 12 de la Matriz/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Enfisema Pulmonar/prevención & control , Factor de Crecimiento Transformador beta1/metabolismo , Envejecimiento , Animales , Pulmón/patología , Metaloproteinasa 12 de la Matriz/genética , Ratones , Ratones Noqueados , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/deficiencia , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Enfisema Pulmonar/etiología , Enfisema Pulmonar/inmunología , Enfisema Pulmonar/fisiopatología , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/genética
12.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 48(1): 111-115, 2019 05 25.
Artículo en Zh | MEDLINE | ID: mdl-31102365

RESUMEN

Cellular senescence is a key factor driving age-related diseases. Recent studies have revealed that senescence-associated secretory phenotype, telomere attrition, epigenetic changes, and mitochondrial autophagy damage may mediate the pathogenesis of senescence-related idiopathic pulmonary fibrosis (IPF). Reducing the level of cellular senescence or clearing senescent cells can down-regulate the expression of fibrosis factors and alleviate the symptoms of IPF. In this review, we outlined the role and mechanism of cellular senescence in IPF.


Asunto(s)
Senescencia Celular , Fibrosis Pulmonar Idiopática , Autofagia , Epigénesis Genética , Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/fisiopatología
13.
J Biol Chem ; 292(34): 14003-14015, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28687632

RESUMEN

M2-polarized macrophages, also known as alternatively activated macrophages, have long been associated with pulmonary fibrosis; however, the mechanism has not been fully defined. Gab1 and Gab2 proteins belong to the Gab family of adaptors and are integral components of the signal specificity in response to various extracellular stimuli. In this report, we found that levels of both Gab1 and Gab2 were elevated in M2-polarized macrophages isolated from bleomycin-induced fibrotic lungs. In vitro Gab1/2 deficiency in bone marrow-derived macrophages abrogated IL-4-mediated M2 polarization. Furthermore, in vivo conditional removal of Gab1 (Gab1MyKO) and germ line knock-out of Gab2 (Gab2-/-) in macrophages prevented a bias toward the M2 phenotype and attenuated bleomycin-induced fibrotic lung remodeling. In support of these observations, Gab1/2 were involved in responses predominated by IL-4 signaling, an essential determinant for macrophage M2 polarization. Further investigation revealed that both Gab1 and -2 are recruited to the IL-4 receptor, synergistically enhancing downstream signal amplification but conferring IL-4 signal preference. Mechanistically, the loss of Gab1 attenuated AKT activation, whereas the absence of Gab2 suppressed STAT6 activation in response to IL-4 stimulation, both of which are commonly attributed to M2-driven pulmonary fibrosis in mice. Taken together, these observations define a non-redundant role of Gab docking proteins in M2 polarization, adding critical insights into the pathogenesis of idiopathic pulmonary fibrosis.


Asunto(s)
Interleucina-4/metabolismo , Macrófagos/metabolismo , Fosfoproteínas/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores de Interleucina-4/agonistas , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Animales , Bleomicina/toxicidad , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Polaridad Celular/efectos de los fármacos , Células Cultivadas , Cruzamientos Genéticos , Interleucina-4/genética , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Ratones Noqueados , Ratones Transgénicos , Fosfoproteínas/genética , Transporte de Proteínas/efectos de los fármacos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/patología , Receptores de Interleucina-4/metabolismo , Proteínas Recombinantes/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
14.
J Cell Physiol ; 233(3): 1825-1835, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28369866

RESUMEN

The exploration of stem and progenitor cells holds promise for advancing our understanding of the biology of tissue repair and regeneration mechanisms after injury. This will also help in the future use of stem cell therapy for the development of regenerative medicine approaches for the treatment of different tissue-species defects or disorders such as bone, cartilages, and tooth defects or disorders. Bone is a specialized connective tissue, with mineralized extracellular components that provide bones with both strength and rigidity, and thus enable bones to function in body mechanical supports and necessary locomotion process. New insights have been added to the use of different types of stem cells in bone and tooth defects over the last few years. In this concise review, we briefly describe bone structure as well as summarize recent research progress and accumulated information regarding the osteogenic differentiation of stem cells, as well as stem cell contributions to bone repair/regeneration, bone defects or disorders, and both restoration and regeneration of bones and cartilages. We also discuss advances in the osteogenic differentiation and bone regeneration of dental and periodontal stem cells as well as in stem cell contributions to dentine regeneration and tooth engineering.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Osteogénesis/fisiología , Medicina Regenerativa/métodos , Trasplante de Células Madre/métodos , Ingeniería de Tejidos/métodos , Regeneración Ósea , Huesos/citología , Diferenciación Celular , Humanos , Células Madre , Diente/citología
15.
Arterioscler Thromb Vasc Biol ; 37(11): 2075-2086, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28882875

RESUMEN

OBJECTIVE: Class III phosphoinositide 3-kinase, also known as VPS34 (vacuolar protein sorting 34), is a highly conserved enzyme regulating important cellular functions such as NADPH oxidase (NOX) assembly, membrane trafficking, and autophagy. Although VPS34 is expressed in platelets, its involvement in platelet activation remains unclear. Herein, we investigated the role of VPS34 in platelet activation and thrombus formation using VPS34 knockout mice. APPROACH AND RESULTS: Platelet-specific VPS34-deficient mice were generated and characterized. VPS34 deficiency in platelets did not influence tail bleeding time. In a ferric chloride-induced mesenteric arteriolar thrombosis model, VPS34-/- mice exhibited a prolonged vessel occlusion time compared with wild-type mice (42.05±4.09 versus 18.30±2.47 minutes). In an in vitro microfluidic whole-blood perfusion assay, thrombus formation on collagen under arterial shear was significantly reduced for VPS34-/- platelets. VPS34-/- platelets displayed an impaired aggregation and dense granule secretion in response to low doses of collagen or thrombin. VPS34 deficiency delayed clot retraction but did not influence platelet spreading on fibrinogen. We also demonstrated that VPS34 deficiency altered the basal level of autophagy in resting platelets and hampered NOX assembly and mTOR (mammalian target of rapamycin) signaling during platelet activation. Importantly, we identified the NOX-dependent reactive oxygen species generation as the major downstream effector of VPS34, which in turn can mediate platelet activation. In addition, by using a specific inhibitor 3-methyladenine, VPS34 was found to operate through a similar NOX-dependent mechanism to promote human platelet activation. CONCLUSIONS: Platelet VPS34 is critical for thrombosis but dispensable for hemostasis. VPS34 regulates platelet activation by influencing NOX assembly.


Asunto(s)
Coagulación Sanguínea , Plaquetas/enzimología , Fosfatidilinositol 3-Quinasas Clase III/sangre , NADPH Oxidasas/sangre , Fosfatos de Fosfatidilinositol/sangre , Activación Plaquetaria , Trombosis/enzimología , Adulto , Animales , Autofagia , Cloruros , Fosfatidilinositol 3-Quinasas Clase III/deficiencia , Fosfatidilinositol 3-Quinasas Clase III/genética , Colágeno/sangre , Modelos Animales de Enfermedad , Femenino , Compuestos Férricos , Genotipo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Agregación Plaquetaria , Especies Reactivas de Oxígeno/sangre , Transducción de Señal , Serina-Treonina Quinasas TOR/sangre , Trombina/metabolismo , Trombosis/sangre , Trombosis/inducido químicamente , Trombosis/genética , Factores de Tiempo , Adulto Joven
16.
J Infect Dis ; 214(4): 625-33, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27330052

RESUMEN

Macrophages can polarize and differentiate to regulate initiation, development, and cessation of inflammation during pulmonary infection with nontypeable Haemophilus influenzae (NTHi). However, the underlying molecular mechanisms driving macrophage phenotypic differentiation are largely unclear. Our study investigated the role of Shp2, a Src homology 2 domain-containing phosphatase, in the regulation of pulmonary inflammation and bacterial clearance. Shp2 levels were increased upon NTHi stimulation. Selective inhibition of Shp2 in mice led to an attenuated inflammatory response by skewing macrophages toward alternatively activated macrophage (M2) polarization. Upon pulmonary NTHi infection, Shp2(-/-) mice, in which the gene encoding Shp2 in monocytes/macrophages was deleted, showed an impaired inflammatory response and decreased antibacterial ability, compared with wild-type controls. In vitro data demonstrated that Shp2 regulated activated macrophage (M1) gene expression via activation of p65-nuclear factor-κB signaling, independent of p38 and extracellular regulated kinase-mitogen-activated proteins kinase signaling pathways. Taken together, our study indicates that Shp2 is required to orchestrate macrophage function and regulate host innate immunity against pulmonary bacterial infection.


Asunto(s)
Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/patología , Haemophilus influenzae/inmunología , Macrófagos/inmunología , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Femenino , Macrófagos/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Am J Physiol Lung Cell Mol Physiol ; 311(6): L1149-L1159, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27793798

RESUMEN

GRB2-associated-binding protein 1 (Gab1) belongs to Gab adaptor family, which integrates multiple signals in response to the epithelial growth factors. Recent genetic studies identified genetic variants of human Gab1 gene as potential risk factors of asthmatic inflammation. However, the functions of Gab1 in lungs remain largely unknown. Alveolar type-II cells (AT-IIs) are responsible for surfactant homeostasis and essentially regulate lung inflammation following various injuries (3). In this study, in vitro knockdown of Gab1 was shown to decrease the surfactant proteins (SPs) levels in AT-IIs. We further examined in vivo Gab1 functions through alveolar epithelium-specific Gab1 knockout mice (Gab1Δ/Δ). In vivo Gab1 deficiency leads to a decrease in SP synthesis and the appearance of disorganized lamellar bodies. Histological analysis of the lung sections in Gab1Δ/Δ mice shows no apparent pathological alterations or inflammation. However, Gab1Δ/Δ mice demonstrate inflammatory responses during the LPS-induced acute lung injury. Similarly, in mice challenged with bleomycin, fibrotic lesions were found to be aggravated in Gab1Δ/Δ These observations suggest that the abolishment of Gab1 in AT-IIs impairs SP homeostasis, predisposing mice to lung injuries. In addition, we observed that the production of surfactants in AT-IIs overexpressing Gab1 mutants, in which Shp2 phosphatase and PI3K kinase binding sites have been mutated (Gab1ΔShp2, Gab1ΔPI3K), has been considerably attenuated. Together, these findings provide the direct evidence about the roles of docking protein Gab1 in lungs, adding to our understanding of acute and interstitial lung diseases caused by the disruption of alveolar SP homeostasis.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Homeostasis , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Fosfoproteínas/metabolismo , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Proteínas Adaptadoras Transductoras de Señales , Células Epiteliales Alveolares/ultraestructura , Animales , Bleomicina , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/deficiencia , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal
18.
J Immunol ; 193(6): 2801-11, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25127857

RESUMEN

The alternative activation of M2 macrophages in the lungs has been implicated as a causative agent in pulmonary fibrosis; however, the mechanisms underlying M2 polarization are poorly characterized. In this study, we investigated the role of the ubiquitously expressed Src homology domain-containing tyrosine phosphatase Shp2 in this process. Shp2 inactivation augmented IL-4-mediated M2 polarization in vitro, suggesting that Shp2 regulates macrophage skewing and prevents a bias toward the M2 phenotype. Conditional removal of Shp2 in monocytes/macrophages with lysozyme M promoter-driven Cre recombinase caused an IL-4-mediated shift toward M2 polarization. Additionally, an increase in arginase activity was detected in Shp2(∆/∆) mice after i.p. injection of chitin, whereas Shp2-deficient macrophages showed enhanced M2 polarization and protection against schistosome egg-induced schistosomiasis. Furthermore, mutants were more sensitive than control mice to bleomycin-induced inflammation and pulmonary fibrosis. Shp2 was associated with IL-4Rα and inhibited JAK1/STAT6 signaling through its phosphatase activity; loss of Shp2 promoted the association of JAK1 with IL-4Rα, which enhanced IL-4-mediated JAK1/STAT6 activation that resulted in M2 skewing. Taken together, these findings define a role for Shp2 in alveolar macrophages and reveal that Shp2 is required to inhibit the progression of M2-associated pulmonary fibrosis.


Asunto(s)
Activación de Macrófagos/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/inmunología , Fibrosis Pulmonar/inmunología , Schistosoma japonicum/inmunología , Esquistosomiasis Japónica/inmunología , Animales , Arginasa/biosíntesis , Bleomicina/efectos adversos , Bleomicina/farmacología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Células Cultivadas , Quitina/farmacología , Inflamación/inducido químicamente , Interleucina-13/biosíntesis , Interleucina-4/biosíntesis , Interleucina-4/inmunología , Interleucina-5/biosíntesis , Janus Quinasa 1/biosíntesis , Pulmón/inmunología , Pulmón/patología , Activación de Macrófagos/genética , Macrófagos Alveolares/inmunología , Ratones , Ratones Noqueados , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Fibrosis Pulmonar/inducido químicamente , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Superficie Celular/inmunología , Factor de Transcripción STAT6/biosíntesis , Esquistosomiasis Japónica/parasitología , Transducción de Señal/genética , Transducción de Señal/inmunología
19.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 45(5): 544-549, 2016 05 25.
Artículo en Zh | MEDLINE | ID: mdl-28087917

RESUMEN

Asthma is a phenotypically heterogeneous chronic disease of the airways. Studies have found that neutrophils are crucial to airway inflammation in acute asthma, persistent asthma, particularly in asthma of poor response to glucocorticoid treatment. The role of neutrophils in development of bronchial asthma is complex, as they can release a potent source of cytokines and inflammatory mediators participating in asthma. Differing from eosinophilic inflammatory asthma, neutrophilic inflammatory asthma is not depend on helper T (Th)2 cells, but may be related to Th1 and Th17 cells. This review highlights the role of neutrophils in the development of asthma, and the treatment of neutrophilic asthma with biological agents and novel small molecules.


Asunto(s)
Asma/fisiopatología , Neutrófilos/inmunología , Neutrófilos/fisiología , Asma/terapia , Citocinas , Humanos , Inflamación/fisiopatología , Inflamación/terapia , Células TH1 , Células Th17
20.
J Biol Chem ; 289(49): 34152-60, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25331952

RESUMEN

The epithelial-mesenchymal transition (EMT) is an essential process for embryogenesis. It also plays a critical role in the initiation of tumor metastasis. Src homology 2 (SH2)-domain containing protein-tyrosine phosphatase-2 (SHP2) is a ubiquitously expressed protein-tyrosine phosphatase and is mutated in many tumors. However, its functional role in tumor metastasis remains largely unknown. We found that TGFß1-induced EMT in lung epithelial A549 cells was partially blocked when SHP2 was decreased by transfected siRNA. The constitutively active form (E76V) promoted EMT while the phosphatase-dead mutation (C459S) and the SHP2 inhibitor PHPS1 blocked EMT, which further demonstrated that the phosphatase activity of SHP2 was required for promoting TGFß1-induced EMT. Using the protein-tyrosine phosphatase domain of SHP2 as bait, we identified a novel SHP2-interacting protein Hook1. Hook1 was down-regulated during EMT in A549 cells. Overexpression of Hook1 inhibited EMT while knockdown of Hook1 promoted EMT. Moreover, both the protein-tyrosine phosphatase domain and N-terminal SH2 domain of SHP2 directly interacted with Hook1. Down-regulation of Hook1 increased SHP2 activity. These results suggested that Hook1 was an endogenous negative regulator of SHP2 phosphatase activity. Our data showed that the protein-tyrosine phosphatase SHP2 was involved in the process of EMT and Hook1 repressed EMT by regulating the activation of SHP2. SHP2-Hook1 complex may play important roles in tumor metastases by regulating EMT in cancer cells.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Proteínas Asociadas a Microtúbulos/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Factor de Crecimiento Transformador beta1/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células HEK293 , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA