Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Allergy Clin Immunol ; 153(3): 672-683.e6, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37931708

RESUMEN

BACKGROUND: Patients with severe asthma can present with eosinophilic type 2 (T2), neutrophilic, or mixed inflammation that drives airway remodeling and exacerbations and represents a major treatment challenge. The common ß (ßc) receptor signals for 3 cytokines, GM-CSF, IL-5, and IL-3, which collectively mediate T2 and neutrophilic inflammation. OBJECTIVE: To determine the pathogenesis of ßc receptor-mediated inflammation and remodeling in severe asthma and to investigate ßc antagonism as a therapeutic strategy for mixed granulocytic airway disease. METHODS: ßc gene expression was analyzed in bronchial biopsy specimens from patients with mild-to-moderate and severe asthma. House dust mite extract and Aspergillus fumigatus extract (ASP) models were used to establish asthma-like pathology and airway remodeling in human ßc transgenic mice. Lung tissue gene expression was analyzed by RNA sequencing. The mAb CSL311 targeting the shared cytokine binding site of ßc was used to block ßc signaling. RESULTS: ßc gene expression was increased in patients with severe asthma. CSL311 potently reduced lung neutrophils, eosinophils, and interstitial macrophages and improved airway pathology and lung function in the acute steroid-resistant house dust mite extract model. Chronic intranasal ASP exposure induced airway inflammation and fibrosis and impaired lung function that was inhibited by CSL311. CSL311 normalized the ASP-induced fibrosis-associated extracellular matrix gene expression network and strongly reduced signatures of cellular inflammation in the lung. CONCLUSIONS: ßc cytokines drive steroid-resistant mixed myeloid cell airway inflammation and fibrosis. The anti-ßc antibody CSL311 effectively inhibits mixed T2/neutrophilic inflammation and severe asthma-like pathology and reverses fibrosis gene signatures induced by exposure to commonly encountered environmental allergens.


Asunto(s)
Asma , Receptores de Citocinas , Ratones , Animales , Humanos , Receptores de Citocinas/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Pulmón , Citocinas/metabolismo , Ratones Transgénicos , Inflamación , Alérgenos , Esteroides/uso terapéutico , Fibrosis , Pyroglyphidae
2.
Haematologica ; 108(1): 83-97, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35770527

RESUMEN

Patients with refractory relapsed multiple myeloma respond to combination treatment with elotuzumab and lenalidomide. The mechanisms underlying this observation are not fully understood. Furthermore, biomarkers predictive of response have not been identified to date. To address these issues, we used a humanized myeloma mouse model and adoptive transfer of human natural killer (NK) cells to show that elotuzumab and lenalidomide treatment controlled myeloma growth, and this was mediated through CD16 on NK cells. In co-culture studies, we showed that peripheral blood mononuclear cells from a subset of patients with refractory relapsed multiple myeloma were effective killers of OPM2 myeloma cells when treated with elotuzumab and lenalidomide, and this was associated with significantly increased expression of CD54 on OPM2 cells. Furthermore, elotuzumab- and lenalidomide-induced OPM2 cell killing and increased OPM2 CD54 expression were dependent on both monocytes and NK cells, and these effects were not mediated by soluble factors alone. At the transcript level, elotuzumab and lenalidomide treatment significantly increased OPM2 myeloma cell expression of genes for trafficking and adhesion molecules, NK cell activation ligands and antigen presentation molecules. In conclusion, our findings suggest that multiple myeloma patients require elotuzumab- and lenalidomide-mediated upregulation of CD54 on autologous myeloma cells, in combination with NK cells and monocytes to mediate an effective anti-tumor response. Furthermore, our data suggest that increased myeloma cell CD54 expression levels could be a powerful predictive biomarker for response to elotuzumab and lenalidomide treatment.


Asunto(s)
Mieloma Múltiple , Animales , Ratones , Humanos , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Lenalidomida/metabolismo , Mieloma Múltiple/metabolismo , Monocitos/metabolismo , Leucocitos Mononucleares/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Células Asesinas Naturales , Dexametasona/uso terapéutico
3.
BMC Cancer ; 21(1): 846, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294073

RESUMEN

BACKGROUND: Prostate cancer is caused by genomic aberrations in normal epithelial cells, however clinical translation of findings from analyses of cancer cells alone has been very limited. A deeper understanding of the tumour microenvironment is needed to identify the key drivers of disease progression and reveal novel therapeutic opportunities. RESULTS: In this study, the experimental enrichment of selected cell-types, the development of a Bayesian inference model for continuous differential transcript abundance, and multiplex immunohistochemistry permitted us to define the transcriptional landscape of the prostate cancer microenvironment along the disease progression axis. An important role of monocytes and macrophages in prostate cancer progression and disease recurrence was uncovered, supported by both transcriptional landscape findings and by differential tissue composition analyses. These findings were corroborated and validated by spatial analyses at the single-cell level using multiplex immunohistochemistry. CONCLUSIONS: This study advances our knowledge concerning the role of monocyte-derived recruitment in primary prostate cancer, and supports their key role in disease progression, patient survival and prostate microenvironment immune modulation.


Asunto(s)
Perfilación de la Expresión Génica , Monocitos/metabolismo , Monocitos/patología , Neoplasias de la Próstata/genética , Transcriptoma , Microambiente Tumoral/genética , Biología Computacional/métodos , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Inmunofenotipificación , Estimación de Kaplan-Meier , Masculino , Anotación de Secuencia Molecular , Pronóstico , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/mortalidad
4.
Mol Cell Proteomics ; 17(6): 1170-1183, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463595

RESUMEN

Prostate cancer is a common cause of cancer-related death in men. E6AP (E6-Associated Protein), an E3 ubiquitin ligase and a transcription cofactor, is elevated in a subset of prostate cancer patients. Genetic manipulations of E6AP in prostate cancer cells expose a role of E6AP in promoting growth and survival of prostate cancer cells in vitro and in vivo However, the effect of E6AP on prostate cancer cells is broad and it cannot be explained fully by previously identified tumor suppressor targets of E6AP, promyelocytic leukemia protein and p27. To explore additional players that are regulated downstream of E6AP, we combined a transcriptomic and proteomic approach. We identified and quantified 16,130 transcripts and 7,209 proteins in castration resistant prostate cancer cell line, DU145. A total of 2,763 transcripts and 308 proteins were significantly altered on knockdown of E6AP. Pathway analyses supported the known phenotypic effects of E6AP knockdown in prostate cancer cells and in parallel exposed novel potential links of E6AP with cancer metabolism, DNA damage repair and immune response. Changes in expression of the top candidates were confirmed using real-time polymerase chain reaction. Of these, clusterin, a stress-induced chaperone protein, commonly deregulated in prostate cancer, was pursued further. Knockdown of E6AP resulted in increased clusterin transcript and protein levels in vitro and in vivo Concomitant knockdown of E6AP and clusterin supported the contribution of clusterin to the phenotype induced by E6AP. Overall, results from this study provide insight into the potential biological pathways controlled by E6AP in prostate cancer cells and identifies clusterin as a novel target of E6AP.


Asunto(s)
Clusterina/genética , Proteínas de Neoplasias/genética , Neoplasias de la Próstata/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Línea Celular , Clusterina/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Neoplasias de la Próstata/genética , Proteómica , Transcriptoma
5.
BMC Urol ; 20(1): 171, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115461

RESUMEN

BACKGROUND: Understanding the drivers of recurrence in aggressive prostate cancer requires detailed molecular and genomic understanding in order to aid therapeutic interventions. We provide here a case report of histological, transcriptional, proteomic, immunological, and genomic features in a longitudinal study of multiple biopsies from diagnosis, through treatment, and subsequent recurrence. CASE PRESENTATION: Here we present a case study of a male in 70 s with high-grade clinically-localised acinar adenocarcinoma treated with definitive hormone therapy and radiotherapy. The patient progressed rapidly with rising PSA and succumbed without metastasis 52 months after diagnosis. We identified the expression of canonical histological markers of neuroendocrine PC (NEPC) including synaptophysin, neuron-specific enolase and thyroid transcription factor 1, as well as intact AR expression, in the recurrent disease only. The resistant disease was also marked by an extremely low immune infiltrate, extensive genomic chromosomal aberrations, and overactivity in molecular hallmarks of NEPC disease including Aurora kinase and E2F, as well as novel alterations in the cMYB pathway. We also observed that responses to both primary treatments (high dose-rate brachytherapy and androgen deprivation therapies) were consistent with known optimal responses-ruling out treatment inefficacy as a factor in relapse. CONCLUSIONS: These data provide novel insights into a case of locally recurrent aggressive prostate cancer harbouring NEPC pathology, in the absence of detected metastasis.


Asunto(s)
Neoplasias de la Próstata/genética , Anciano , Resistencia a Antineoplásicos , Humanos , Estudios Longitudinales , Masculino , Tumores Neuroendocrinos/genética , Fenotipo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunología , Transcriptoma
6.
Carcinogenesis ; 40(6): 707-714, 2019 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-31087000

RESUMEN

Since its discovery, the E3 ubiquitin ligase E6-associated protein (E6AP) has been studied extensively in two pathological contexts: infection by the human papillomavirus (HPV), and the neurodevelopmental disorder, Angelman syndrome. Vital biological links between E6AP and other viruses, namely hepatitis C virus and encephalomyocarditis virus, have been recently uncovered. Critically, oncogenic E6AP activities have been demonstrated to contribute to cancers of both viral and non-viral origins. HPV-associated cancers serve as the primary example of E6AP involvement in cancers driven by viruses. Studies over the past few years have exposed a role for E6AP in non-viral-related cancers. This has been demonstrated in B-cell lymphoma and prostate cancers, where oncogenic E6AP functions drive these cancers by acting on key tumour suppressors. In this review we discuss the role of E6AP in viral infection, viral propagation and viral-related cancer. We discuss processes affected by oncogenic E6AP, which promote cancers of viral and non-viral aetiology. Overall, recent findings support the role of oncogenic E6AP in disrupting key cellular processes, including tumour suppression and the immune response. E6AP is consequently emerging as an attractive therapeutic target for a number of specific cancers.


Asunto(s)
Neoplasias/fisiopatología , Neoplasias/virología , Infecciones por Papillomavirus/fisiopatología , Ubiquitina-Proteína Ligasas/fisiología , Carcinogénesis , Virus de la Encefalomiocarditis/patogenicidad , Hepacivirus/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Papillomaviridae/patogenicidad
7.
Prostate ; 78(8): 563-575, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29520850

RESUMEN

INTRODUCTION: The development of radioresistance in prostate cancer (PCa) is an important clinical issue and is still largely uninformed by personalized molecular characteristics. The aim of this study was to establish a platform that describes the early oncoproteomic response of human prostate tissue to radiation therapy (RT) using a prospective human tissue cohort. METHODS: Fresh and fixed transperineal biopsies from eight men with clinically localized tumors were taken prior to and 14 days following a single fraction of high-dose-rate brachytherapy. Quantitative protein analysis was achieved using an optimized protein extraction pipeline and subsequent data-independent acquisition mass spectroscopy (DIA-MS). Ontology analyses were used to identify enriched functional pathways, with the candidates further interrogated in formalin-fixed paraffin-embedded tissue biopsies from five additional patients. RESULTS: We obtained a mean coverage of 5660 proteins from fresh tissue biopsies; with the principal post-radiation change observed being an increase in levels amongst a total of 49 proteins exhibiting abundance changes. Many of these changes in abundance varied between patients and, typically to prostate cancer tissue, exhibited a high level of heterogeneity. Ontological analysis revealed the enrichment of the protein activation cascades of three immunological pathways: humoral immune response, leukocyte mediated immunity and complement activation. These were predominantly associated with the extracellular space. We validated significant expression differences in between 20% and 61% of these candidates using the separate fixed-tissue cohort and established their feasibility as an experimental tissue resource by acquiring quantitative data for a mean of 5152 proteins per patient. DISCUSSION: In this prospective study, we have established a sensitive and reliable oncoproteomic pipeline for the analysis of both fresh and formalin-fixed human PCa tissue. We identified multiple pathways known to be radiation-responsive and have established a powerful database of candidates and pathways with no current association with RT. This information may be beneficial in the advancement of personalized therapies and potentially, predictive biomarkers.


Asunto(s)
Braquiterapia , Espectrometría de Masas/métodos , Neoplasias de la Próstata/fisiopatología , Neoplasias de la Próstata/radioterapia , Tolerancia a Radiación/efectos de la radiación , Biopsia , Humanos , Masculino , Estudios Prospectivos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteómica , Tolerancia a Radiación/fisiología
8.
Radiat Environ Biophys ; 57(3): 241-249, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29850926

RESUMEN

Transcriptional dosimetry is an emergent field of radiobiology aimed at developing robust methods for detecting and quantifying absorbed doses using radiation-induced fluctuations in gene expression. A combination of RNA sequencing, array-based and quantitative PCR transcriptomics in cellular, murine and various ex vivo human models has led to a comprehensive description of a fundamental set of genes with demonstrable dosimetric qualities. However, these are yet to be validated in human tissue due to the scarcity of in situ-irradiated source material. This represents a major hurdle to the continued development of transcriptional dosimetry. In this study, we present a novel evaluation of a previously reported set of dosimetric genes in human tissue exposed to a large therapeutic dose of radiation. To do this, we evaluated the quantitative changes of a set of dosimetric transcripts consisting of FDXR, BAX, BCL2, CDKN1A, DDB2, BBC3, GADD45A, GDF15, MDM2, SERPINE1, TNFRSF10B, PLK3, SESN2 and VWCE in guided pre- and post-radiation (2 weeks) prostate cancer biopsies from seven patients. We confirmed the prolonged dose-responsivity of most of these transcripts in in situ-irradiated tissue. BCL2, GDF15, and to some extent TNFRSF10B, were markedly unreliable single markers of radiation exposure. Nevertheless, as a full set, these genes reliably segregated non-irradiated and irradiated tissues and predicted radiation absorption on a patient-specific basis. We also confirmed changes in the translated protein product for a small subset of these dosimeters. This study provides the first confirmatory evidence of an existing dosimetric gene set in less-accessible tissues-ensuring peripheral responses reflect tissue-specific effects. Further work will be required to determine if these changes are conserved in different tissue types, post-radiation times and doses.


Asunto(s)
Proteómica , Transcripción Genética/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Radioisótopos de Iridio/uso terapéutico , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia , Radiometría
9.
J Proteome Res ; 16(2): 413-420, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27936807

RESUMEN

The functionality of small RNAs from abundant species of "housekeeping" noncoding RNAs (e.g., rRNA, tRNA, snRNA, snoRNA, etc.) remains a highly studied topic. The current state of research on short RNAs derived from transfer RNA (tRNA), called tRNA-derived fragments (tRFs), has been restricted largely to expression studies and limited functional studies. 5' tRFs are known translational inhibitors in mammalian cells, yet little is known about their functionality. Here we report on the first experimental evidence of the tRF protein interactome, identifying the mammalian multisynthetase complex as the primary interactor of the 5' tRF Gln19. We also present proteome-wide SILAC evidence that 5' tRFs increase ribosomal and poly(A)-binding protein translation.


Asunto(s)
Ligasas/genética , Complejos Multienzimáticos/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Proteínas de Unión al ARN/genética , Ribosomas/genética , Secuencia de Bases , Biología Computacional , Inmunoprecipitación , Marcaje Isotópico , Ligasas/metabolismo , Complejos Multienzimáticos/metabolismo , Poli A/genética , Poli A/metabolismo , ARN de Transferencia/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo
11.
Nucleic Acids Res ; 42(14): 8984-95, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25038252

RESUMEN

The Piwi-piRNA pathway is active in animal germ cells where its functions are required for germ cell maintenance and gamete differentiation. Piwi proteins and piRNAs have been detected outside germline tissue in multiple phyla, but activity of the pathway in mammalian somatic cells has been little explored. In particular, Piwi expression has been observed in cancer cells, but nothing is known about the piRNA partners or the function of the system in these cells. We have surveyed the expression of the three human Piwi genes, Hiwi, Hili and Hiwi2, in multiple normal tissues and cancer cell lines. We find that Hiwi2 is ubiquitously expressed; in cancer cells the protein is largely restricted to the cytoplasm and is associated with translating ribosomes. Immunoprecipitation of Hiwi2 from MDAMB231 cancer cells enriches for piRNAs that are predominantly derived from processed tRNAs and expressed genes, species which can also be found in adult human testis. Our studies indicate that a Piwi-piRNA pathway is present in human somatic cells, with an uncharacterised function linked to translation. Taking this evidence together with evidence from primitive organisms, we propose that this somatic function of the pathway predates the germline functions of the pathway in modern animals.


Asunto(s)
Proteínas/metabolismo , ARN Interferente Pequeño/metabolismo , ARN de Transferencia/metabolismo , Línea Celular Tumoral , Metilación de ADN , Genoma Humano , Humanos , Procesamiento Postranscripcional del ARN , ARN Pequeño no Traducido/metabolismo , Proteínas de Unión al ARN
12.
Nat Commun ; 14(1): 2697, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188662

RESUMEN

Spatial proteomics technologies have revealed an underappreciated link between the location of cells in tissue microenvironments and the underlying biology and clinical features, but there is significant lag in the development of downstream analysis methods and benchmarking tools. Here we present SPIAT (spatial image analysis of tissues), a spatial-platform agnostic toolkit with a suite of spatial analysis algorithms, and spaSim (spatial simulator), a simulator of tissue spatial data. SPIAT includes multiple colocalization, neighborhood and spatial heterogeneity metrics to characterize the spatial patterns of cells. Ten spatial metrics of SPIAT are benchmarked using simulated data generated with spaSim. We show how SPIAT can uncover cancer immune subtypes correlated with prognosis in cancer and characterize cell dysfunction in diabetes. Our results suggest SPIAT and spaSim as useful tools for quantifying spatial patterns, identifying and validating correlates of clinical outcomes and supporting method development.


Asunto(s)
Neoplasias , Humanos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Proteómica , Microambiente Tumoral
13.
Cell Death Dis ; 13(9): 777, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075907

RESUMEN

Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Proteína p53 Supresora de Tumor , Animales , Carcinogénesis/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Cancers (Basel) ; 14(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36010941

RESUMEN

Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.

15.
Methods Mol Biol ; 2265: 529-541, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33704738

RESUMEN

We describe here a protocol to measure gene expression, T cell receptor (TCR) sequence, and protein expression by single T cells extracted from melanoma, using 10× Chromium technology. This method includes freezing and thawing of the melanoma infiltrating lymphocytes, staining of cells with fluorescent and barcode-conjugated antibodies, sorting of T cells, and loading the cells on the 10× Chromium Controller. After sequencing, analysis includes quality control, genetic demultiplexing to resolve genetically different samples, and T cell clonality and clustering analysis. Single cell RNA sequencing paints the complete portrait of individual T cells, including their clonality and phenotype, and it reconstructs a complete picture of the T cell infiltrate in a tumor that is represented as cell clustering similar to a pointillism painting.


Asunto(s)
Linfocitos Infiltrantes de Tumor/inmunología , Melanoma , RNA-Seq , Receptores de Antígenos de Linfocitos T , Análisis de la Célula Individual , Humanos , Melanoma/genética , Melanoma/inmunología , Receptores de Antígenos de Linfocitos T/inmunología
16.
Int J Radiat Oncol Biol Phys ; 111(2): 502-514, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34023423

RESUMEN

PURPOSE: We examined how radiation dose per fraction (DPF) and total dose, as represented by biological effective dose (BED), can independently and differentially affect the immunomodulatory capacity of radiation therapy (RT). METHODS AND MATERIALS: AT3-OVA mammary and MC38 colorectal tumors in C57BL/6 mice were irradiated with rationally selected dose-fractionation schedules, alone or with immune-modulating or -depleting agents. Tumor growth was monitored as a readout of therapeutic response. Flow cytometry and RNA sequencing of mouse tumors and analysis of transcriptomic data sets from irradiated human cancers were used to examine the immunomodulatory effects of the different radiation schedules. RESULTS: In AT3-OVA tumors, radiation DPF rather than BED determined the ability of RT to evoke local antitumor CD8+ T cell responses and synergize with anti-PD-1 therapy. Natural killer cell-mediated control of irradiated tumors was more sensitive to radiation BED. Radiation-induced regulatory T cell (Treg) responses, which were detected in both mouse and human tumors, were a major factor underlying the differential activation of adaptive immunity by radiation DPF and the activity of natural killer cells during the early phase of response to RT. Targeted inhibition of Treg responses within irradiated tumors rescued and enhanced local tumor control by RT and permitted the generation of abscopal and immunologic memory responses, irrespective of radiation schedule. MC38 tumors did not support the induction of an amplified Treg response to RT and were highly vulnerable to its immunoadjuvant effects. CONCLUSIONS: Local radiation-induced Treg responses are influenced by radiation schedule and tumor type and are a critical determinant of the immunoadjuvant potential of RT and its ability to synergize with T cell-targeted immunotherapy.


Asunto(s)
Fraccionamiento de la Dosis de Radiación , Neoplasias Experimentales/radioterapia , Linfocitos T Reguladores/inmunología , Inmunidad Adaptativa/efectos de la radiación , Animales , Linfocitos T CD8-positivos/inmunología , Femenino , Inmunidad Innata/efectos de la radiación , Inmunomodulación , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales/inmunología
17.
Eur Urol Focus ; 7(2): 234-237, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33172774

RESUMEN

LuTectomy is an open-label phase 1/2 nonrandomised clinical trial evaluating the dosimetry, efficacy, and toxicity of the lutetium-177-radiolabelled small molecule PSMA-617 in men with high-risk localised/locoregional advanced prostate cancer with high prostate-specific membrane antigen expression who are undergoing radical prostatectomy and pelvic lymph node dissection.


Asunto(s)
Prostatectomía , Enfermedades de la Próstata/cirugía , Dipéptidos , Compuestos Heterocíclicos con 1 Anillo , Humanos , Masculino , Antígeno Prostático Específico
18.
Nat Commun ; 12(1): 4746, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362900

RESUMEN

The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.


Asunto(s)
Inmunidad Celular , Células Asesinas Naturales/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Neoplasias/inmunología , Animales , Antineoplásicos , Línea Celular Tumoral , Citocinas , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antígenos de Histocompatibilidad Menor/genética , Metástasis de la Neoplasia , Neoplasias/patología
19.
Oncoimmunology ; 9(1): 1802979, 2020 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-32939322

RESUMEN

The presence of a tumor can alter host immunity systematically. The immune-tumor interaction in one site may impact the local immune microenvironment in distal tissues through the circulation, and therefore influence the efficacy of immunotherapies to distant metastases. Improved understanding of the immune-tumor interactions during immunotherapy treatment in a metastatic setting may enhance the efficacy of current immunotherapies. Here we investigate the response to αPD-1/αCTLA4 and trimAb (αDR5, α4-1BB, αCD40) of 67NR murine breast tumors grown simultaneously in the mammary fat pad (MFP) and lung, a common site of breast cancer metastasis, and compared to tumors grown in isolation. Lung tumors present in isolation were resistant to both therapies. However, in MFP and lung tumor-bearing mice, the presence of a MFP tumor could increase lung tumor response to immunotherapy and decrease the number of lung metastases, leading to complete eradication of lung tumors in a proportion of mice. The MFP tumor influence on lung metastases was mediated by CD8+ T cells, as CD8+ T cell depletion abolished the difference in lung metastases. Furthermore, mice with concomitant MFP and lung tumors had increased tumor specific, effector CD8+ T cells infiltration in the lungs. Thus, we propose a model where tumors in an immunogenic location can give rise to systemic anti-tumor CD8+ T cell responses that could be utilized to target metastatic tumors. These results highlight the requirement for clinical consideration of cross-talk between primary and metastatic tumors for effective immunotherapy for cancers otherwise resistant to immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Pulmonares , Animales , Inmunoterapia , Neoplasias Pulmonares/terapia , Depleción Linfocítica , Ratones , Microambiente Tumoral
20.
Cancers (Basel) ; 12(6)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545367

RESUMEN

Lung cancer poses the greatest cancer-related death risk and males have poorer outcomes than females, for unknown reasons. Patient sex is not a biological variable considered in lung cancer standard of care. Correlating patient genetics with outcomes is predicted to open avenues for improved management. Using a bioinformatics approach across non-small cell lung cancer (NSCLC) subtypes, we identified where patient sex, mutation of the major tumor suppressor gene, Tumour protein P53 (TP53), and immune signatures stratified outcomes in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), among datasets of The Cancer Genome Atlas (TCGA). We exposed sex and TP53 gene mutations as prognostic for LUAD survival. Longest survival in LUAD occurred among females with wild-type (wt) TP53 genes, high levels of immune infiltration and enrichment for pathway signatures of Interferon Gamma (INF-γ), Tumour Necrosis Factor (TNF) and macrophages-monocytes. In contrast, poor survival in men with LUAD and wt TP53 genes corresponded with enrichment of Transforming Growth Factor Beta 1 (TGFB1, hereafter TGF-ß) and wound healing signatures. In LUAD with wt TP53 genes, elevated gene expression of immune checkpoint CD274 (hereafter: PD-L1) and also protein 53 (p53) negative-regulators of the Mouse Double Minute (MDM)-family predict novel avenues for combined immunotherapies. LUSC is dominated by male smokers with TP53 gene mutations, while a minor population of TCGA LC patients with wt TP53 genes unexpectedly had the poorest survival, suggestive of a separate etiology. We conclude that advanced approaches to LUAD and LUSC therapy lie in the consideration of patient sex, TP53 gene mutation status and immune signatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA