Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658164

RESUMEN

Pain is considered a multidimensional experience that embodies not merely sensation, but also emotion and perception. As is appropriate for this complexity, pain is represented and processed by an extensive matrix of cortical and subcortical structures. Of these structures, the cerebellum is gaining increasing attention. Although association between the cerebellum and both acute and chronic pain have been extensively detailed in electrophysiological and neuroimaging studies, a deep understanding of what functions are mediated by these associations is lacking. Nevertheless, the available evidence implies that lobules IV-VI and Crus I are especially pertinent to pain processing, and anatomical studies reveal that these regions connect with higher-order structures of sensorimotor, emotional, and cognitive function. Therefore, we speculate that the cerebellum exerts a modulatory role in pain via its communication with sites of sensorimotor, executive, reward, and limbic function. On this basis, in this review, we propose numerous ways in which the cerebellum might contribute to both acute and chronic pain, drawing particular attention to emotional and cognitive elements of pain. In addition, we emphasise the importance of advancing our knowledge about the relationship between the cerebellum and pain by discussing novel therapeutic opportunities that capitalize on this association.


Asunto(s)
Cerebelo , Dolor , Humanos , Cerebelo/fisiopatología , Cerebelo/diagnóstico por imagen , Animales , Dolor/fisiopatología , Dolor/psicología , Emociones/fisiología
2.
Brain Behav Immun ; 118: 480-498, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499209

RESUMEN

Trigeminal neuropathic pain is emotionally distressing and disabling. It presents with allodynia, hyperalgesia and dysaesthesia. In preclinical models it has been assumed that cephalic nerve constriction injury shows identical molecular, cellular, and sex dependent neuroimmune changes as observed in extra-cephalic injury models. This study sought empirical evidence for such assumptions using the infraorbital nerve chronic constriction model (ION-CCI). We compared the behavioural consequences of nerve constriction with: (i) the temporal patterns of recruitment of macrophages and T-lymphocytes at the site of nerve injury and in the trigeminal ganglion; and (ii) the degree of demyelination and axonal reorganisation in the injured nerve. Our data demonstrated that simply testing for allodynia and hyperalgesia as is done in extra-cephalic neuropathic pain models does not provide access to the range of injury-specific nociceptive responses and behaviours reflective of the experience of trigeminal neuropathic pain. Similarly, trigeminal neuroimmune changes evoked by nerve injury are not the same as those identified in models of extra-cephalic neuropathy. Specifically, the timing, magnitude, and pattern of ION-CCI evoked macrophage and T-lymphocyte activity differs between the sexes.


Asunto(s)
Neuralgia , Neuralgia del Trigémino , Ratas , Masculino , Femenino , Animales , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Neuralgia del Trigémino/metabolismo , Neuralgia/metabolismo , Ganglio del Trigémino/metabolismo , Modelos Animales de Enfermedad
3.
Cereb Cortex ; 33(17): 9822-9834, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37415068

RESUMEN

Prior experiences, conditioning cues, and expectations of improvement are essential for placebo analgesia expression. The dorsolateral prefrontal cortex is considered a key region for converting these factors into placebo responses. Since dorsolateral prefrontal cortex neuromodulation can attenuate or amplify placebo, we sought to investigate dorsolateral prefrontal cortex biochemistry and function in 38 healthy individuals during placebo analgesia. After conditioning participants to expect pain relief from a placebo "lidocaine" cream, we collected baseline magnetic resonance spectroscopy (1H-MRS) at 7 Tesla over the right dorsolateral prefrontal cortex. Following this, functional magnetic resonance imaging scans were collected during which identical noxious heat stimuli were delivered to the control and placebo-treated forearm sites. There was no significant difference in the concentration of gamma-aminobutyric acid, glutamate, Myo-inositol, or N-acetylaspartate at the level of the right dorsolateral prefrontal cortex between placebo responders and nonresponders. However, we identified a significant inverse relationship between the excitatory neurotransmitter glutamate and pain rating variability during conditioning. Moreover, we found placebo-related activation within the right dorsolateral prefrontal cortex and altered functional magnetic resonance imaging coupling between the dorsolateral prefrontal cortex and the midbrain periaqueductal gray, which also correlated with dorsolateral prefrontal cortex glutamate. These data suggest that the dorsolateral prefrontal cortex formulates stimulus-response relationships during conditioning, which are then translated to altered cortico-brainstem functional relationships and placebo analgesia expression.


Asunto(s)
Analgesia , Corteza Prefontal Dorsolateral , Humanos , Dolor , Analgesia/métodos , Tronco Encefálico , Imagen por Resonancia Magnética/métodos , Glutamatos , Corteza Prefrontal/diagnóstico por imagen
4.
Neuroimage ; 266: 119828, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549431

RESUMEN

The midbrain periaqueductal grey (PAG) is a critical region for the mediation of pain-related behavioural responses. Neuronal tract tracing techniques in experimental animal studies have demonstrated that the lateral column of the PAG (lPAG) displays a crude somatotopy, which is thought to be critical for the selection of contextually appropriate behavioural responses, without the need for higher brain input. In addition to the different behavioural responses to cutaneous and muscle pain - active withdrawal versus passive coping - there is evidence that cutaneous pain is processed in the region of the lPAG and muscle pain in the adjacent ventrolateral PAG (vlPAG). Given the fundamental nature of these behavioural responses to cutaneous and muscle pain, these PAG circuits are assumed to have been preserved, though yet to be definitively documented in humans. Using ultra-high field (7-Tesla) functional magnetic resonance imaging we determined the locations of signal intensity changes in the PAG during noxious cutaneous heat stimuli and muscle pain in healthy control participants. Images were processed and blood oxygen level dependant (BOLD) signal changes within the PAG determined. It was observed that noxious cutaneous stimulation of the lip, cheek, and ear evoked maximal increases in BOLD activation in the rostral contralateral PAG, whereas noxious cutaneous stimulation of the thumb and toe evoked increases in the caudal contralateral PAG. Analysis of individual participants demonstrated that these activations were located in the lPAG. Furthermore, we found that deep muscular pain evoked the greatest increases in signal intensity in the vlPAG. These data suggest that the crude somatotopic organization of the PAG may be phyletically preserved between experimental animals and humans, with a body-face delineation capable of producing an appropriate behavioural response based on the location and tissue origin of a noxious stimulus.


Asunto(s)
Mialgia , Sustancia Gris Periacueductal , Animales , Humanos , Sustancia Gris Periacueductal/fisiología , Neuronas , Conducta Animal/fisiología , Imagen por Resonancia Magnética
5.
Neurochem Res ; 48(7): 2265-2280, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36941432

RESUMEN

The ability to adaptively guide behaviour requires the integration of external information with internal motivational factors. Decision-making capabilities can be impaired by acute stress and is often exacerbated by chronic pain. Chronic neuropathic pain patients often present with cognitive dysfunction, including impaired decision-making. The mechanisms underlying these changes are not well understood but may include altered monoaminergic transmission in the brain. In this study we investigated the relationships between dopamine, serotonin, and their metabolites in key brain regions that regulate motivated behaviour and decision-making. The neurochemical profiles of the medial prefrontal cortex, orbital prefrontal cortex, and nucleus accumbens were analysed using HPLC in rats that received a chronic constriction injury (CCI) of the right sciatic nerve and an acute stress (15-min restraint), prior to an outcome devaluation task. CCI alone significantly decreased dopamine but not serotonin concentrations in the medial prefrontal cortex. By contrast, restraint stress acutely increased dopamine in the medial prefrontal cortex, and the nucleus accumbens; and increased serotonin in the medial prefrontal cortex 2 h later. The sustained dopaminergic and serotonergic responses to acute stress highlight the importance of an animal's ability to mount an effective coping response. In addition, these data suggest that the impact of nerve injury and acute stress on outcome-devaluation occurs independently of dopaminergic and serotonergic transmission in the medial prefrontal cortex, orbital prefrontal cortex and nucleus accumbens of rats.


Asunto(s)
Neuralgia , Núcleo Accumbens , Ratas , Animales , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Serotonina/metabolismo , Ratas Sprague-Dawley , Corteza Prefrontal/metabolismo , Neuralgia/metabolismo
6.
J Neurosci ; 41(47): 9794-9806, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34697093

RESUMEN

Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia remain to be directly addressed. This study used ultra-high-field 7 tesla functional MRI (fMRI) to accurately resolve differences in brainstem circuitry present during the generation of placebo analgesia and nocebo hyperalgesia in healthy human participants (N = 25, 12 male). Over 2 successive days, through blinded application of altered thermal stimuli, participants were deceptively conditioned to believe that two inert creams labeled lidocaine (placebo) and capsaicin (nocebo) were acting to modulate their pain relative to a third Vaseline (control) cream. In a subsequent test phase, fMRI image sets were collected while participants were given identical noxious stimuli to all three cream sites. Pain intensity ratings were collected and placebo and nocebo responses determined. Brainstem-specific fMRI analysis revealed altered activity in key pain modulatory nuclei, including a disparate recruitment of the periaqueductal gray (PAG)-rostral ventromedial medulla (RVM) pathway when both greater placebo and nocebo effects were observed. Additionally, we found that placebo and nocebo responses differentially activated the parabrachial nucleus but overlapped in engagement of the substantia nigra and locus coeruleus. These data reveal that placebo and nocebo effects are generated through differential engagement of the PAG-RVM pathway, which in concert with other brainstem sites likely influences the experience of pain by modulating activity at the level of the dorsal horn.SIGNIFICANCE STATEMENT Understanding endogenous pain modulatory mechanisms would support development of effective clinical treatment strategies for both acute and chronic pain. Specific brainstem nuclei have long been known to play a central role in nociceptive modulation; however, because of the small size and complex organization of the nuclei, previous neuroimaging efforts have been limited in directly identifying how these subcortical networks interact during the development of antinociceptive and pro-nociceptive effects. We used ultra-high-field fMRI to resolve brainstem structures and measure signal change during placebo analgesia and nocebo hyperalgesia. We define overlapping and disparate brainstem circuitry responsible for altering pain perception. These findings extend our understanding of the detailed organization and function of discrete brainstem nuclei involved in pain processing and modulation.


Asunto(s)
Tronco Encefálico/fisiología , Hiperalgesia/fisiopatología , Efecto Nocebo , Percepción del Dolor/fisiología , Placebos/farmacología , Adulto , Analgésicos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
7.
Neuroimage ; 259: 119408, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35752415

RESUMEN

Over the past two decades, magnetic resonance imaging (MRI) studies have explored brain activation patterns during acute noxious stimuli. Whilst these human investigations have detailed changes in primarily cortical regions, they have generally not explored discrete changes within small brain areas that are critical in driving behavioural, autonomic, and endocrine responses to pain, such as within subregions of the hypothalamus, amygdala, and midbrain periaqueductal gray matter (PAG). Ultra-high field (7-Tesla) MRI provides enough signal-to-noise at high spatial resolutions to investigate activation patterns within these small brain regions during acute noxious stimulation in awake humans. In this study we used 7T functional MRI to concentrate on hypothalamic, amygdala, and PAG signal changes during acute noxious orofacial stimuli. Noxious heat stimuli were applied in three separate fMRI scans to three adjacent sites on the face in 16 healthy control participants (7 females). Images were processed using SPM12 and custom software, and blood oxygen level dependent signal changes within the hypothalamus, amygdala, and PAG assessed. We identified altered activity within eight unique subregions of the hypothalamus, four unique subregions of the amygdala, and a single region in the lateral PAG. Specifically, within the hypothalamus and amygdala, signal intensity largely decreased during noxious stimulation, and increased in the lateral PAG. Furthermore, we found sex-related differences in discrete regions of the hypothalamus and amygdala. This study reveals that the activity of discrete nuclei during acute noxious thermal stimulation in awake humans.


Asunto(s)
Dolor Agudo , Sustancia Gris Periacueductal , Amígdala del Cerebelo/diagnóstico por imagen , Femenino , Humanos , Hipotálamo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Sustancia Gris Periacueductal/diagnóstico por imagen , Sustancia Gris Periacueductal/fisiología , Vigilia
8.
J Neurosci Res ; 100(10): 1890-1907, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35853016

RESUMEN

Chronic pain is more prevalent and reported to be more severe in women. Opioid analgesics are less effective in women and result in stronger nauseant effects. The neurobiological mechanisms underlying these sex differences have yet to be clearly defined, though recent research has suggested neuronal-glial interactions are likely involved. We have previously shown that similar to people, morphine is less effective at reducing pain behaviors in female rats. In this study, we used the immunohistochemical detection of glial fibrillary acidic protein (GFAP) expression to investigate sex differences in astrocyte density and morphology in six medullary regions known to be modulated by pain and/or opioids. Morphine administration had small sex-dependent effects on overall GFAP expression, but not on astrocyte morphology, in the rostral ventromedial medulla, the subnucleus reticularis dorsalis, and the area postrema. Significant sex differences in the density and morphology of GFAP immunopositive astrocytes were detected in all six regions. In general, GFAP-positive cells in females showed smaller volumes and reduced complexity than those observed in males. Furthermore, females showed lower overall GFAP expression in all regions except for the area postrema, the critical medullary region responsible for opioid-induced nausea and emesis. These data support the possibility that differences in astrocyte activity might underlie the sex differences seen in the processing of opioids in the context of chronic neuropathic pain.


Asunto(s)
Morfina , Neuralgia , Analgésicos Opioides/farmacología , Animales , Astrocitos/metabolismo , Tronco Encefálico , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Masculino , Morfina/farmacología , Neuralgia/metabolismo , Neuroglía/metabolismo , Ratas , Caracteres Sexuales
9.
J Neurochem ; 158(5): 1151-1171, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34287873

RESUMEN

Individual differences in the effects of a chronic neuropathic injury on social behaviours characterize both the human experience and pre-clinical animal models. The impacts of these changes to the well-being of the individual are often underappreciated. Earlier work from our laboratory using GeneChip® microarrays identified increased cholecystokinin (CCK) gene expression in the periaqueductal gray (PAG) of rats that showed persistent changes in social interactions during a Resident-Intruder encounter following sciatic nerve chronic constriction injury (CCI). In this study, we confirmed these gene regulation patterns using RT-PCR and identified the anatomical location of the CCK-mRNA as well as the translated CCK peptides in the midbrains of rats with a CCI. We found that rats with persistent CCI-induced changes in social behaviours had increased CCK-mRNA in neurons of the ventrolateral PAG and dorsal raphe nuclei, as well as increased CCK-8 peptide expression in terminal boutons located in the lateral and ventrolateral PAG. The functional significance of these changes was explored by microinjecting small volumes of CCK-8 into the PAG of uninjured rats and observing their Resident-Intruder social interactions. Disturbances to social interactions identical to those observed in CCI rats were evoked when injection sites were located in the rostral lateral and ventrolateral PAG. We suggest that CCI-induced changes in CCK expression in these PAG regions contributes to the disruptions to social behaviours experienced by a subset of individuals with neuropathic injury.


Asunto(s)
Colecistoquinina/biosíntesis , Reacción de Fuga/fisiología , Sustancia Gris Periacueductal/metabolismo , Neuropatía Ciática/metabolismo , Interacción Social , Animales , Reacción de Fuga/efectos de los fármacos , Masculino , Microinyecciones/métodos , Sustancia Gris Periacueductal/efectos de los fármacos , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/psicología , Ratas , Ratas Sprague-Dawley , Neuropatía Ciática/patología , Neuropatía Ciática/psicología , Sincalida/administración & dosificación
10.
Behav Pharmacol ; 32(6): 479-486, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34320522

RESUMEN

Many people with chronic pain escalate their opioid dosage to counteract tolerance effects. A treatment regimen consisting of placebos admixed with opioids has been suggested as a possible therapeutic option that could reduce the harm of long-term opioid use. However, the analgesic efficacy of such a regimen requires further investigation before widespread adoption. We have recently reported that a 4-day pharmacological conditioning procedure, which paired morphine (6 mg/kg) with contextual cues, elicited placebo analgesia in subpopulations of male (35%) and female (25%) rats with sciatic nerve chronic constriction injury (CCI). Here, we investigated how an escalating morphine dosage during conditioning affects the incidence and strength of placebo analgesia. Forty-four male, Sprague-Dawley rats received CCI. Thirty-eight (86%) rats developed strong cold allodynia by day 6 post-surgery, as measured by hind paw withdrawal (HPW) behaviour on a 5°C cold plate (120 s). In this experiment, pharmacological conditioning consisted of an escalating morphine dose over 4 days (8/9/10/12 mg/kg). This dosing regimen produced strong reductions in HPW behaviour and counteracted the effects of morphine tolerance during conditioning. However, none of the rats given the placebo treatment (n = 12) demonstrated reductions in HPW behaviour when morphine was substituted for saline (i.e. placebo analgesia), but instead showed a strong behavioural response (rearing). These results demonstrate that a high, escalating dose of morphine failed to produce conditioned placebo analgesia in rats with CCI. It is possible that admixing placebos with opioids may be similarly ineffective in chronic pain patients when the opioids regimen is high or escalating.


Asunto(s)
Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Morfina/farmacología , Neuralgia , Efecto Placebo , Analgésicos Opioides/farmacología , Animales , Conducta Animal/efectos de los fármacos , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/psicología , Modelos Animales de Enfermedad , Cálculo de Dosificación de Drogas , Efectos Adversos a Largo Plazo/inducido químicamente , Efectos Adversos a Largo Plazo/prevención & control , Neuralgia/tratamiento farmacológico , Neuralgia/psicología , Ratas , Ratas Sprague-Dawley
11.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34948457

RESUMEN

High-fat diet (HFD)-induced comorbid cognitive and behavioural impairments are thought to be the result of persistent low-grade neuroinflammation. Metformin, a first-line medication for the treatment of type-2 diabetes, seems to ameliorate these comorbidities, but the underlying mechanism(s) are not clear. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are neuroprotective peptides endowed with anti-inflammatory properties. Alterations to the PACAP/VIP system could be pivotal during the development of HFD-induced neuroinflammation. To unveil the pathogenic mechanisms underlying HFD-induced neuroinflammation and assess metformin's therapeutic activities, (1) we determined if HFD-induced proinflammatory activity was present in vulnerable brain regions associated with the development of comorbid behaviors, (2) investigated if the PACAP/VIP system is altered by HFD, and (3) assessed if metformin rescues such diet-induced neurochemical alterations. C57BL/6J male mice were divided into two groups to receive either standard chow (SC) or HFD for 16 weeks. A further HFD group received metformin (HFD + M) (300 mg/kg BW daily for 5 weeks) via oral gavage. Body weight, fasting glucose, and insulin levels were measured. After 16 weeks, the proinflammatory profile, glial activation markers, and changes within the PI3K/AKT intracellular pathway and the PACAP/VIP system were evaluated by real-time qPCR and/or Western blot in the hypothalamus, hippocampus, prefrontal cortex, and amygdala. Our data showed that HFD causes widespread low-grade neuroinflammation and gliosis, with regional-specific differences across brain regions. HFD also diminished phospho-AKT(Ser473) expression and caused significant disruptions to the PACAP/VIP system. Treatment with metformin attenuated these neuroinflammatory signatures and reversed PI3K/AKT and PACAP/VIP alterations caused by HFD. Altogether, our findings demonstrate that metformin treatment rescues HFD-induced neuroinflammation in vulnerable brain regions, most likely by a mechanism involving the reinstatement of PACAP/VIP system homeostasis. Data also suggests that the PI3K/AKT pathway, at least in part, mediates some of metformin's beneficial effects.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Encefalitis/tratamiento farmacológico , Metformina/administración & dosificación , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Estudios de Casos y Controles , Regulación hacia Abajo , Encefalitis/inducido químicamente , Encefalitis/genética , Encefalitis/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Transducción de Señal/efectos de los fármacos , Péptido Intestinal Vasoactivo/genética
12.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34681607

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related immunosuppressive peptides. However, the underlying mechanisms through which these peptides regulate microglial activity are not fully understood. Using lipopolysaccharide (LPS) to induce an inflammatory challenge, we tested whether PACAP or VIP differentially affected microglial activation, morphology and cell migration. We found that both peptides attenuated LPS-induced expression of the microglial activation markers Iba1 and iNOS (### p < 0.001), as well as the pro-inflammatory mediators IL-1ß, IL-6, Itgam and CD68 (### p < 0.001). In contrast, treatment with PACAP or VIP exerted distinct effects on microglial morphology and migration. PACAP reversed LPS-induced soma enlargement and increased the percentage of small-sized, rounded cells (54.09% vs. 12.05% in LPS-treated cells), whereas VIP promoted a phenotypic shift towards cell subpopulations with mid-sized, spindle-shaped somata (48.41% vs. 31.36% in LPS-treated cells). Additionally, PACAP was more efficient than VIP in restoring LPS-induced impairment of cell migration and the expression of urokinase plasminogen activator (uPA) in BV2 cells compared with VIP. These results suggest that whilst both PACAP and VIP exert similar immunosuppressive effects in activated BV2 microglia, each peptide triggers distinctive shifts towards phenotypes of differing morphologies and with differing migration capacities.


Asunto(s)
Microglía/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Péptido Intestinal Vasoactivo/farmacología , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microglía/citología , Microglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/metabolismo , Fenotipo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
13.
Eur J Neurosci ; 50(5): 2786-2800, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31325375

RESUMEN

Chronic neuropathic pain and psychological stress interact to compromise goal-directed control over behaviour following mild psychological stress. The dorsomedial (DMS) and dorsolateral (DLS) striatum in the rat are crucial for the expression of goal-directed and habitual behaviours, respectively. This study investigated whether changes in monoamine levels in the DMS and DLS following nerve injury and psychological stress reflect these behavioural differences. Neuropathic pain was induced by a chronic constriction injury (CCI) of the sciatic nerve in Sprague-Dawley rats. Acute stress was induced using a 15-min restraint. Behavioural flexibility was assessed using the outcome devaluation paradigm. Noradrenaline, serotonin, dopamine and associated metabolites were measured bilaterally from the DLS and DMS. In uninjured rats, restraint increased dopaminergic markers in the left and serotonergic markers in the right of both the DMS and DLS, indicating a possible left hemisphere-mediated dominance. CCI led to a slightly different lateralised effect, with a larger effect in the DMS than in the DLS. Individual differences in behavioural flexibility following CCI negatively correlated with dopaminergic markers in the right DLS, but positively correlated with these markers in the left DMS. A combination of CCI and restraint reduced behavioural flexibility, which was associated with the loss of the left/DMS dominance. These data suggest that behavioural flexibility following psychological stress or pain is associated with a left hemisphere dominance within the dorsal striatum. The loss of behavioural flexibility following the combined stressors is then associated with a transition from left to right, and DMS to DLS dominance.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Motivación/fisiología , Norepinefrina/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Serotonina/metabolismo , Estrés Psicológico/metabolismo , Animales , Conducta Animal/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
14.
J Neurosci Res ; 95(12): 2376-2390, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28609560

RESUMEN

The medial prefrontal cortex (mPFC) is critical for selecting and shaping complex behavioral responses. In rodent models of neuropathic pain there is evidence for both structural and functional changes in the mPFC. Brain derived neurotrophic factor (BDNF) plays a critical role in the normal functioning of the mPFC. It has been suggested that the disruption of complex behaviors and mood seen in some neuropathic pain patients is mediated in part by alterations of BDNF in this cortical region. In Sprague-Dawley rats, mPFC levels of BDNF and TrkB mRNA and protein, were quantified and compared to controls (n = 24) 6 days after either: (a) halothane (1.5%) anaesthesia (n = 12), (b) sham surgery under halothane (n = 12), (c) sciatic nerve chronic constriction injury under halothane (n = 48). The social behaviors of the rats were quantified daily during the experimental period. Halothane anaesthesia increased BDNF and TrkB mRNA bilaterally. These increases were reversed in rats that underwent sham surgical and nerve injury procedures. Further, halothane anaesthesia, surgical procedures, and nerve injury each decreased BDNF protein levels. These results reveal a marked and distinct BDNF expression profile in the mPFC of rats that have undergone each stage of the procedure to produce neuropathic pain by chronic constriction injury of the sciatic nerve. The highly sensitive nature of neurotrophic signalling to general anaesthesia in the mature neuronal circuit of the adult rat brain highlights the importance of careful evaluation and interpretation of data evaluating the effects of experimental procedures on neural substrates.


Asunto(s)
Anestésicos por Inhalación/farmacología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Neuralgia/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Animales , Modelos Animales de Enfermedad , Halotano/farmacología , Masculino , Neuralgia/etiología , Ratas , Ratas Sprague-Dawley , Nervio Ciático/lesiones
15.
Mol Pain ; 11: 50, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26283658

RESUMEN

BACKGROUND: The periaqueductal gray region (PAG) is one of several brain areas identified to be vulnerable to structural and functional change following peripheral nerve injury. Sciatic nerve constriction injury (CCI) triggers neuropathic pain and three distinct profiles of changes in complex behaviours, which include altered social and sleep-wake behaviours as well as changes in endocrine function. The PAG encompasses subgroups of the A10 dopaminergic and A6 noradrenergic cell groups; the origins of significant ascending projections to hypothalamic and forebrain regions, which regulate sleep, complex behaviours and endocrine function. We used RT-PCR, western blots and immunohistochemistry for tyrosine hydroxylase to determine whether (1) tyrosine hydroxylase increased in the A10/A6 cells and/or; (2) de novo synthesis of tyrosine hydroxylase, in a 'TH-naïve' population of ventral PAG neurons characterized rats with distinct patterns of behavioural and endocrine change co-morbid with CCI evoked-pain. RESULTS: Evidence for increased tyrosine hydroxylase transcription and translation in the constitutive A10/A6 cells was found in the midbrain of rats that showed an initial 2-3 day post-CCI, behavioural and endocrine change, which recovered by days 5-6 post-CCI. Furthermore these rats showed significant increases in the density of TH-IR fibres in the vPAG. CONCLUSIONS: Our data provide evidence for: (1) potential increases in dopamine and noradrenaline synthesis in vPAG cells; and (2) increased catecholaminergic drive on vPAG neurons in rats in which transient changes in social behavior are seen following CCI. The data suggests a role for dopaminergic and noradrenergic outputs, and catecholaminergic inputs of the vPAG in the expression of one of the profiles of behavioural and endocrine change triggered by nerve injury.


Asunto(s)
Catecolaminas/metabolismo , Mesencéfalo/metabolismo , Mesencéfalo/fisiopatología , Tejido Nervioso/lesiones , Recuperación de la Función , Animales , Conducta Animal , Western Blotting , Inmunohistoquímica , Masculino , Mesencéfalo/patología , Tejido Nervioso/metabolismo , Tejido Nervioso/patología , Sustancia Gris Periacueductal/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
16.
J Neuroinflammation ; 12: 96, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25986444

RESUMEN

BACKGROUND: Chronic neuropathic pain is a neuro-immune disorder, characterised by allodynia, hyperalgesia and spontaneous pain, as well as debilitating affective-motivational disturbances (e.g., reduced social interactions, sleep-wake cycle disruption, anhedonia, and depression). The role of the immune system in altered sensation following nerve injury is well documented. However, its role in the development of affective-motivational disturbances remains largely unknown. Here, we aimed to characterise changes in the immune response at peripheral and spinal sites in a rat model of neuropathic pain and disability. METHODS: Sixty-two rats underwent sciatic nerve chronic constriction injury (CCI) and were characterised as either Pain and disability, Pain and transient disability or Pain alone on the basis of sensory threshold testing and changes in post-CCI dominance behaviour in resident-intruder interactions. Nerve ultrastructure was assessed and the number of T lymphocytes and macrophages were quantified at the site of injury on day six post-CCI. ATF3 expression was quantified in the dorsal root ganglia (DRG). Using a multiplex assay, eight cytokines were quantified in the sciatic nerve, DRG and spinal cord. RESULTS: All CCI rats displayed equal levels of mechanical allodynia, structural nerve damage, and reorganisation. All CCI rats had significant infiltration of macrophages and T lymphocytes to both the injury site and the DRG. Pain and disability rats had significantly greater numbers of T lymphocytes. CCI increased IL-6 and MCP-1 in the sciatic nerve. Examination of disability subgroups revealed increases in IL-6 and MCP-1 were restricted to Pain and disability rats. Conversely, CCI led to a decrease in IL-17, which was restricted to Pain and transient disability and Pain alone rats. CCI significantly increased IL-6 and MCP-1 in the DRG, with IL-6 restricted to Pain and disability rats. CCI rats had increased IL-1ß, IL-6 and MCP-1 in the spinal cord. Amongst subgroups, only Pain and disability rats had increased IL-1ß. CONCLUSIONS: This study has defined individual differences in the immune response at peripheral and spinal sites following CCI in rats. These changes correlated with the degree of disability. Our data suggest that individual immune signatures play a significant role in the different behavioural trajectories following nerve injury, and in some cases may lead to persistent affective-motivational disturbances.


Asunto(s)
Anhedonia/fisiología , Conducta Animal/fisiología , Depresión/fisiopatología , Neuroinmunomodulación/fisiología , Nervio Ciático/lesiones , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Animales , Quimiocina CCL2/metabolismo , Depresión/psicología , Modelos Animales de Enfermedad , Interleucina-6/metabolismo , Macrófagos/patología , Masculino , Neuralgia/fisiopatología , Neuralgia/psicología , Ratas , Ratas Sprague-Dawley , Nervio Ciático/fisiopatología , Umbral Sensorial/fisiología , Trastornos del Sueño del Ritmo Circadiano/psicología , Linfocitos T/patología
17.
J Anat ; 225(6): 591-603, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25269883

RESUMEN

Physical and psychological trauma which results in mood disorders and the disruption of complex behaviours is associated with reductions in hippocampal volume. Clinical evaluation of neuropathic pain reveals mood and behavioural change in a significant number of patients. A rat model of neuropathic injury results in complex behavioural changes in a subpopulation (~30%) of injured rats; these changes are co-morbid with a range of other 'disabilities'. The specific objective of this study was to determine in rats the morphology of the hippocampus and dentate gyrus in individuals with and without complex behavioural disruptions following a constriction injury of the sciatic nerve, and to determine whether rats that develop disabilities following nerve injury have a reduced hippocampal volume compared with injured rats with no disabilities. The social behaviours of nerve-injured rats were evaluated before and after nerve injury. The morphology of the hippocampus of rats with and without behavioural disruptions was compared in serial histological sections. Single-housing and repeated social-interaction testing had no effect on the morphology of either the hippocampus or the dentate gyrus. Rats with transient or ongoing disability identified by behavioural disruption following sciatic nerve injury, show bilateral reductions in hippocampal volume, and lateralised reduction in the dentate gyrus (left side). Disabled rats display a combination of behavioural and physiological changes, which resemble many of the criteria used clinically to diagnose mood disorders. They also show reductions in the volume of the hippocampus similar to people with clinically diagnosed mood disorders. The sciatic nerve injury model reveals a similarity to the human neuropathic pain presentation presenting an anatomically specific focus for the investigation of the neural mechanisms underpinning the co-morbidity of chronic pain and mood disorder.


Asunto(s)
Conducta Animal/fisiología , Giro Dentado/patología , Hipocampo/patología , Traumatismos de los Nervios Periféricos/fisiopatología , Nervio Ciático/lesiones , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley , Conducta Social
18.
Pain ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713812

RESUMEN

ABSTRACT: Understanding the mechanisms that underpin the transition from acute to chronic pain is critical for the development of more effective and targeted treatments. There is growing interest in the contribution of glial cells to this process, with cross-sectional preclinical studies demonstrating specific changes in these cell types capturing targeted timepoints from the acute phase and the chronic phase. In vivo longitudinal assessment of the development and evolution of these changes in experimental animals and humans has presented a significant challenge. Recent technological advances in preclinical and clinical positron emission tomography, including the development of specific radiotracers for gliosis, offer great promise for the field. These advances now permit tracking of glial changes over time and provide the ability to relate these changes to pain-relevant symptomology, comorbid psychiatric conditions, and treatment outcomes at both a group and an individual level. In this article, we summarize evidence for gliosis in the transition from acute to chronic pain and provide an overview of the specific radiotracers available to measure this process, highlighting their potential, particularly when combined with ex vivo/in vitro techniques, to understand the pathophysiology of chronic neuropathic pain. These complementary investigations can be used to bridge the existing gap in the field concerning the contribution of gliosis to neuropathic pain and identify potential targets for interventions.

19.
eNeuro ; 11(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38997145

RESUMEN

Chronic neuropathic pain can result from nervous system injury and can persist in the absence of external stimuli. Although ongoing pain characterizes the disorder, in many individuals, the intensity of this ongoing pain fluctuates dramatically. Previously, it was identified that functional magnetic resonance imaging signal covariations between the midbrain periaqueductal gray (PAG) matter, rostral ventromedial medulla (RVM), and spinal trigeminal nucleus are associated with moment-to-moment fluctuations in pain intensity in individuals with painful trigeminal neuropathy (PTN). Since this brainstem circuit is modulated by higher brain input, we sought to determine which cortical sites might be influencing this brainstem network during spontaneous fluctuations in pain intensity. Over 12 min, we recorded the ongoing pain intensity in 24 PTN participants and classified them as fluctuating (n = 13) or stable (n = 11). Using a PAG seed, we identified connections between the PAG and emotional-affective sites such as the hippocampal and posterior cingulate cortices, the sensory-discriminative posterior insula, and cognitive-affective sites such as the dorsolateral prefrontal (dlPFC) and subgenual anterior cingulate cortices that were altered dependent on spontaneous high and low pain intensity. Additionally, sliding-window functional connectivity analysis revealed that the dlPFC-PAG connection anticorrelated with perceived pain intensity over the entire 12 min period. These findings reveal cortical systems underlying moment-to-moment changes in perceived pain in PTN, which likely cause dysregulation in the brainstem circuits previously identified, and consequently alter the appraisal of pain across time.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Adulto , Tronco Encefálico/fisiopatología , Tronco Encefálico/diagnóstico por imagen , Enfermedades del Nervio Trigémino/fisiopatología , Anciano , Neuralgia del Trigémino/fisiopatología , Neuralgia del Trigémino/diagnóstico por imagen , Dimensión del Dolor , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen
20.
Cell Mol Neurobiol ; 33(7): 953-63, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23846420

RESUMEN

Neuropathic pain is diagnosed primarily by sensory dysfunction, which includes both spontaneous, and stimulus-evoked pain. Clinical evaluation highlights the disabilities which characterise this condition for most patients. Chronic constriction injury of the sciatic nerve (CCI) evokes sensory dysfunction characteristic of neuropathic pain. Approximately, 30 % of CCI rats show disabilities similar to those identified in clinical evaluation of neuropathic pain patients, these include: altered social behaviours; sleep disturbances; and endocrine dysfunction. The periaqueductal grey (PAG) is a nodal point in the brain circuits which regulate these functions, and undergoes a distinct set of neural and glial adaptations following CCI, in rats with disabilities. CCI increases corticosterone, which through its actions at the glucocorticoid receptor (GR), can trigger cellular adaptation. GR expression in PAG was quantified using qRT-PCR, Western blotting and immunohistochemical analyses and nerve-injured rats, with and without disabilities, were compared. Our data showed that the PAG of disabled rats has significantly increased expression of GR mRNA and protein. Further, this increased protein expression reflects contrasting patterns of change in GR expression in PAG subregions. The dorsolateral PAG had significant increases in the number of GR-immunoreactive (GR-IR) cells and the caudal lateral and ventrolateral PAG each had significant reductions in the number of GR-IR cells. These regional increases and decreases correlated with the degree of disability, as indicated by the degree of change in social behaviours. Our results suggest a role for altered PAG, GR-corticosterone interactions and their resultant cellular consequences in the expression of disabilities in a subpopulation of nerve-injured rats.


Asunto(s)
Conducta Animal , Sustancia Gris Periacueductal/metabolismo , Receptores de Glucocorticoides/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/patología , Animales , Western Blotting , Regulación de la Expresión Génica/efectos de los fármacos , Inmunohistoquímica , Masculino , Sustancia Gris Periacueductal/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Glucocorticoides/genética , Análisis de Regresión , Nervio Ciático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA