Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Opt Express ; 30(17): 30666-30671, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242165

RESUMEN

Quasi-bound state in the continuum (BIC) has significant potential because it supports an ultra-high quality factor (Q-factor). Here, we propose a graphene-embedded subwavelength grating that supports quasi-BIC for tuning very sharp Fano resonance transmission. The strongly enhanced light-graphene interaction from the quasi-BIC enables fine variation of the transmission at the resonant wavelength. The Q-factor of quasi-BIC significantly decreases as the Fermi level of graphene increases. We also propose a low-energy consumption THz-wave modulator using this scheme. The designed modulator shows approximately 100% modulation depth with a Fermi level shift of only EF = 90 meV.

2.
Opt Express ; 30(13): 23544-23555, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225031

RESUMEN

We report on new THz electromagnetic emission mechanism from deformational coupling of acoustic (AC) phonons with electrons in the propagation medium of non-polar Si. The epicenters of the AC phonon pulses are the surface and interface of a GaP transducer layer whose thickness (d) is varied in nanoscale from 16 to 45 nm. The propagating AC pulses locally modulate the bandgap, which in turn generates a train of electric field pulses, inducing an abrupt drift motion at the depletion edge of Si. The fairly time-delayed THz bursts, centered at different times (t1T H z, t2T H z, and t3T H z), are concurrently emitted only when a series of AC pulses reach the point of the depletion edge of Si, even without any piezoelectricity. The analysis on the observed peak emission amplitudes is consistent with calculations based on the combined effects of mobile charge carrier density and AC-phonon-induced local deformation, which recapitulates the role of deformational potential coupling in THz wave emission in a formulatively distinct manner from piezoelectric counterpart.

3.
Opt Express ; 29(14): 21492-21501, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34265935

RESUMEN

A perfect metal film with a periodic arrangement of cut-through slits, an anisotropic metallic metamaterial film, mimics a dielectric slab and supports guided electromagnetic waves in the direction perpendicular to the slits. Since the guided Bloch modes exist only below the light line, conventional metallic metamaterial films do not exhibit interesting leaky-wave effects, such as bound states in the continuum and Fano resonances. Here, we introduce metallic metasurface superlattices that include multiple slits in a period and demonstrate that the superlattices support the Fano resonances and bound states in the continuum. We show that the number of Fano resonances and bound states depend on the number of slits in a period of superlattices through rigorous finite element method simulations. Experimental results in microwave region also support the creation of Fano resonance and bound states in the continuum by the increment of the number of slits in a period of superlattices.

4.
Phys Rev Lett ; 126(1): 013601, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33480783

RESUMEN

Conventional photonic lattices, such as metamaterials and photonic crystals, exhibit various interesting physical properties that are attributed to periodic modulations in lattice parameters. In this study, we introduce novel types of photonic lattices, namely Fourier-component-engineered metasurfaces, that do not possess the first Fourier harmonic component in the lattice parameters. We demonstrate that these metasurfaces support the continuous high-Q bound states near second stop bands. The concept of engineering Fourier harmonic components in periodic modulations provides a new method to manipulate electromagnetic waves in artificial periodic structures.

5.
Opt Express ; 28(26): 39453-39462, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379494

RESUMEN

In the physical description of photonic lattices, leaky-mode resonance and bound states in the continuum are central concepts. Understanding of their existence conditions and dependence on lattice parameters is of fundamental interest. Primary leaky-wave effects are associated with the second stop band at the photonic lattice Γ point. The pertinent band gap is defined by the frequency difference between the leaky-mode band edge and the bound-state edge. This paper address the polarization properties of the band gaps resident in laterally periodic one-dimensional photonic lattices. We show that the band gaps pertinent to TM and TE leaky modes exhibit significantly differentiated evolution as the lattice parameters vary. This is because the TM band gap is governed by a surface effect due to the discontinuity of the dielectric constant at the interfaces of the photonic lattice as well as by a Bragg effect due to the periodic in-plane dielectric constant modulation. We find that when the lattice is thin (thick), the surface (Bragg) effect dominates the Bragg (surface) effect in the formation of the TM band. This leads to complex TM band dynamics with multiple band closures possible under parametric variation. In complete contrast, the TE band gap is governed only by the Bragg effect thus exhibiting simpler band dynamics. This research elucidates the important effect of polarization on resonant leaky-mode band dynamics whose explanation has heretofore not been available.

6.
Opt Lett ; 44(22): 5634-5637, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730126

RESUMEN

We demonstrate high-energy terahertz generation from a large-aperture (75-mm diameter) lithium niobate wafer by using a femtosecond laser with energy up to 2 J. This scheme utilizes optical rectification in a bulk lithium niobate crystal, where most terahertz energy is emitted from a thin layer of the rear surface. Despite its simple setup, this scheme can yield 0.19 mJ of terahertz energy with laser-to-terahertz conversion efficiencies of ∼10-4, about 3 times better than ZnTe when pumped at 800 nm. The experimental setup is upscalable for multimillijoule terahertz generation with petawatt laser pumping.

7.
Opt Express ; 26(10): 13677-13685, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29801390

RESUMEN

Optically tunable, strong polarization-dependent transmission of terahertz pulses through aligned Ag nanowires on a Si substrate is demonstrated. Terahertz pulses primarily pass through the Ag nanowires and the transmittance is weakly dependent on the angle between the direction of polarization of the terahertz pulse and the direction of nanowire alignment. However, the transmission of a terahertz pulse through optically excited materials strongly depends on the polarization direction. The extinction ratio increases as the power of the pumping laser increases. The enhanced polarization dependency is explained by the redistribution of photocarriers, which accelerates the sintering effect along the direction of alignment of the Ag nanowires. The photocarrier redistribution effect is examined by the enhancement of terahertz emission from the sample. Oblique metal nanowires on Si could be utilized for designing optically tunable terahertz polarization modulators.

8.
Opt Express ; 26(19): 25315-25321, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30469634

RESUMEN

We demonstrate a novel technique to achieve a highly efficient terahertz (THz) modulation based on hybrid structures of organic layers (fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) fabricated on both sides of a silicon (Si) substrate. The organic layer generating an optically induced electron (or hole) transfer is deposited on the back (or front) side of the Si substrate. The spatial charge separation improved owing to the transferred photo-excited electrons or holes at both interfaces of PCBM/Si and TIPS-pentacene/Si, enables a highly efficient THz wave modulation. The photoexcitation on the hole-transfer organic layer (TIPS-pentacene/Si) further improves the modulation efficiency, as the diffusion of electrons through the Si substrate is faster than that of photo-excited holes.

9.
Opt Express ; 25(6): 6365-6371, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28380988

RESUMEN

We report on a method for realizing high refractive index metamaterials using corrugated metallic slot structures at terahertz frequencies. The effective refractive index and peak index frequency can be controlled by varying the width of the air gap in the corrugated slot arrays. The phenomenon occurs because of the secondary resonance effect due to the fundamental inductive-capacitive resonance, which generates a red-shift of the fundamental resonance determined by twice the length of the corrugated metallic slots. In addition, multiple gaps in the corrugated slots act as plasmonic hotspots which have the properties of three-dimensional subwavelength confinement due to extremely strong enhancement of the terahertz waves. The versatile characteristics of the structures may have many potential applications in designing compact optical devices incorporating various functionalities and in developing highly sensitive spectroscopic/imaging systems.

10.
Opt Express ; 22(23): 28954-65, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25402134

RESUMEN

We report that the Fano resonance of self-collimated beams can be achieved in a two-dimensional photonic crystal by introducing a Fano resonator that is composed of zigzag line defects. An asymmetric Fano line shape in a transmission spectrum is generated by the interference between radiated light beams from the resonator and self-collimated beams that directly pass through the resonator without resonance. It is shown that the Fano profile increases in sharpness as the number of zigzag line defects increases because the phase values of the radiated light beams change more rapidly when the number of defects increases. The Fano resonance of self-collimated beams could provide an efficient approach to manipulate light propagation and increase the possibility of application of self-collimated beams.


Asunto(s)
Fenómenos Ópticos , Fotones , Simulación por Computador , Cristalización , Electricidad , Campos Magnéticos , Análisis Espectral
11.
Opt Express ; 22(15): 18433-9, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25089462

RESUMEN

We first present a new phenomenon: the quarter-wavelength resonance of an electromagnetic field in planar plasmonic metamaterials consisting of asymmetrically coupled air-slot arrays, which is essential for a monopole resonator. The anti-nodal electric field intensity of the quarter-wavelength fundamental mode is formed by strong charge concentrations at the sharp metallic edges of the crossing position of the air-slots, and the nodal point of the electric field intensity naturally occurs at the other end of the air-slot. By tuning the structural asymmetry, the quarter-wavelength resonances were successfully split from the half-wavelength resonance, experimentally and numerically.

12.
Opt Express ; 22(4): 4050-8, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24663726

RESUMEN

The propagation characteristics of spoof surface plasmon modes are studied in both real and reciprocal spaces. From the metallic square lattice, we obtain constant frequency contours by directly measuring electric fields in the microwave frequency regime. The anisotropy of the measured constant frequency contour supports the presence of the negative refraction and the self-collimation which are confirmed from measured electric fields. Additionally, we demonstrate the spoof surface plasmon beam splitter in which the splitting ratio of the self-collimated beam is controlled by varying the height of rods.

13.
Appl Opt ; 52(14): 3229-33, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23669834

RESUMEN

We report that self-collimated beams from a photonic crystal can be refracted to any direction in air by introducing an additional layer composed of dielectric rods at a photonic crystal surface. The refraction angle can be tuned from negative to positive value by adjusting the period of the additional layer. The refracted beam power can be also controllable by varying the radii of rods in the layer and the distance between the layer and the surface. The grating-induced omnidirectional refraction of self-collimated beams could provide an efficient way to manipulate light propagation and increase the possibility of application of self-collimated beams.

14.
Sci Rep ; 13(1): 6680, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095302

RESUMEN

Graphene-based optical modulators have been extensively studied owing to the high mobility and tunable permittivity of graphene. However, weak graphene-light interactions make it difficult to achieve a high modulation depth with low energy consumption. Here, we propose a high-performance graphene-based optical modulator consisting of a photonic crystal structure and a waveguide with graphene that exhibits an electromagnetically-induced-transparency-like (EIT-like) transmission spectrum at terahertz frequency. The high quality-factor guiding mode to generate the EIT-like transmission enhances light-graphene interaction, and the designed modulator achieves a high modulation depth of 98% with a significantly small Fermi level shift of 0.05 eV. The proposed scheme can be utilized in active optical devices that require low power consumption.

15.
Opt Express ; 20(2): 1385-91, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-22274483

RESUMEN

We propose a novel design of photonic crystal fiber (PCF) using an elliptical air hole in the core as a defected core in order to enhance the performance of modal birefringence and to control the properties of chromatic dispersion at the same time. From the simulation results, it is shown that the proposed fiber has high birefringence up to the order of 10(-2), negative flattened chromatic dispersion in a broad range of wavelengths, and low confinement loss less than that of the single mode fiber. The outstanding advantage of the proposed PCF is that high birefringence, negative flattened dispersion, and low confinement loss can be achieved just by adding a small sized elliptical air hole in the core to the elliptical air hole PCF, especially at the same time.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Tecnología de Fibra Óptica/métodos , Fibras Ópticas , Birrefringencia , Simulación por Computador , Cristalización , Diseño de Equipo
16.
Opt Express ; 20(6): 6116-23, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22418491

RESUMEN

We report experimental and finite-difference time-domain simulation studies on terahertz (THz) characteristics of band gaps by using metal grooves which are located inside the flare parallel-plate waveguide. The vertically localized standing-wave cavity mode (SWCM) between the upper waveguide surface and groove bottom, and the horizontally localized SWCM between two groove side walls (groove cavity) are observed. The E field intensity of the horizontally localized SWCM in grooves is very strongly enchanced which is three order higher than that of the input THz. The 4 band gaps except the Bragg band gap are caused by the π radian delay (out of phase) between the reflected THz field by grooves and the propagated THz field through the air gap. The measurement and simulation results agree well.


Asunto(s)
Metales/química , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Radiación Terahertz
17.
Opt Express ; 20(8): 8309-16, 2012 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-22513542

RESUMEN

The resonant transmission of self-collimated beams through zigzag-box resonators is demonstrated experimentally and numerically. Numerical simulations show that the flat-wavefront and the width of the beam are well maintained after passing through zigzag-box resonators because the up and the down zigzag-sides prevent the beam from spreading out and the wavefront is perfectly reconstructed by the output zigzag-side of the resonator. Measured split resonant frequencies of two- and three-coupled zigzag-box resonators are well agreed with those predicted by a tight binding model to consider optical coupling between the nearest resonators. Slowing down the speed of self-collimated beams is also demonstrated by using a twelve-coupled zigzag-box resonator in simulations. Our work could be useful in implementing devices to manipulate self-collimated beams in time domain.

18.
Opt Express ; 19(21): 20199-204, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21997030

RESUMEN

We report on the three-dimensional subwavelength confinement of the electromagnetic waves at a coupled metallic slit structure beyond diffraction limit in terahertz region. Lateral confinement behavior, leading to the three-dimensional confinement, is caused by a strong funneling effect of the light which occurs at the intersection of slits with a sharp metal geometry. Tunability of the resonant frequency and the position of the light confinement is achieved by controlling the slit length and the position of the intersection of slits, respectively.


Asunto(s)
Técnicas Biosensibles , Resonancia por Plasmón de Superficie/métodos , Espectroscopía de Terahertz/métodos , Radiación Electromagnética , Diseño de Equipo , Imagenología Tridimensional , Ensayo de Materiales , Metales/química , Óptica y Fotónica
19.
Opt Express ; 19(16): 14852-9, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21934846

RESUMEN

We present a tunable notch filter having a wide terahertz (THz) frequency range and a low-pass filter (LPF) having a 0.78 THz cutoff frequency. Single slit and multiple slits are positioned at the center of air gaps in tapered parallel-plate waveguides (TPPWG) to obtain the notch filter and LPF, respectively. The notch filter has a dispersion-free and low-loss transverse magnetic (TM) mode. The Q factor was proved to be 138, and the resonant frequency is easily tunable by adjusting the air gaps between TPPWG. On the other hand, the cut off frequency of the LPF was determined using a Bragg stop band, which depends on slit period. The LPF has a transition width of 68 GHz at the cutoff frequency and a dynamic range of 35 dB at stop bands. In addition, the characteristics of such filters were analyzed using finite-difference time-domain (FDTD) simulations.


Asunto(s)
Técnicas Biosensibles , Metales/química , Espectroscopía de Terahertz/métodos , Aire , Simulación por Computador , Diseño de Equipo , Filtración , Gases , Magnetismo , Refractometría , Factores de Tiempo
20.
Opt Express ; 18(24): 25371-8, 2010 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-21164885

RESUMEN

Using a periodic array of split ring resonator holes within a terahertz range, we numerically and experimentally confirmed a zero refractive index at localized waveguide resonant frequency of aluminum film. The effective index was directly calculated from the phase difference of electromagnetic waves passing through film and air. Thickness-independent resonant frequency, as well as spatially static hole resonant modes, clearly verified a zero refractive index. For experimentation, we fabricated samples by means of a femtosecond laser machining system and employed a terahertz time domain spectroscopy system to measure transmitted terahertz pulses. Further, the effective index of refraction extracted from phases and amplitude of measured transmitted pulses confirmed a zero refraction index at resonant frequency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA