Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9476, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658634

RESUMEN

Interfacial magnetic interactions between different elements are the origin of various spin-transport phenomena in multi-elemental magnetic systems. We investigate the coupling between the magnetic moments of the rare-earth, transition-metal, and heavy-metal elements across the interface in a GdFeCo/Pt thin film, an archetype system to investigate ferrimagnetic spintronics. The Pt magnetic moments induced by the antiferromagnetically aligned FeCo and Gd moments are measured using element-resolved x-ray measurements. It is revealed that the proximity-induced Pt magnetic moments are always aligned parallel to the FeCo magnetic moments, even below the ferrimagnetic compensation temperature where FeCo has a smaller moment than Gd. This is understood by a theoretical model showing distinct effects of the rare-earth Gd 4f and transition-metal FeCo 3d magnetic moments on the Pt electronic states. In particular, the Gd and FeCo work in-phase to align the Pt moment in the same direction, despite their antiferromagnetic configuration. The unexpected additive roles of the two antiferromagnetically coupled elements exemplify the importance of detailed interactions among the constituent elements in understanding magnetic and spintronic properties of thin film systems.

2.
Nat Commun ; 14(1): 5605, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699895

RESUMEN

We investigate the voltage control of magnetism in a van der Waals (vdW) heterostructure device consisting of two distinct vdW materials, the ferromagnetic Fe3-xGeTe2 and the ferroelectric In2Se3. It is observed that gate voltages applied to the Fe3-xGeTe2/In2Se3 heterostructure device modulate the magnetic properties of Fe3-xGeTe2 with significant decrease in coercive field for both positive and negative voltages. Raman spectroscopy on the heterostructure device shows voltage-dependent increase in the in-plane In2Se3 and Fe3-xGeTe2 lattice constants for both voltage polarities. Thus, the voltage-dependent decrease in the Fe3-xGeTe2 coercive field, regardless of the gate voltage polarity, can be attributed to the presence of in-plane tensile strain. This is supported by density functional theory calculations showing tensile-strain-induced reduction of the magnetocrystalline anisotropy, which in turn decreases the coercive field. Our results demonstrate an effective method to realize low-power voltage-controlled vdW spintronic devices utilizing the magnetoelectric effect in vdW ferromagnetic/ferroelectric heterostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA