Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Strength Cond Res ; 35(11): 3056-3062, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31972822

RESUMEN

ABSTRACT: Keener, MM, Critchley, ML, Layer, JS, Johnson, EC, Barrett, SF, and Dai, B. The effect of stirrup length on impact attenuation and its association with muscle strength. J Strength Cond Res 35(11): 3056-3062, 2021-Horseback-riders have a high prevalence of low back injuries, which may be related to the repetitive low back impacts experienced in riding. The purposes of this study were to quantify the effect of 3 stirrup lengths and 2 riding styles on the peak acceleration experienced by the rider and the association between the peak acceleration and the rider's different elements of muscle strength. Thirteen female riders performed a sitting or rising trot at each of the 3 stirrup lengths (2-point length, mid-seat length, or dressage length), while the acceleration of the tibia, sacrum, seventh cervical vertebra (C7), and head were collected. Subjects completed a push-up, a vertical jump, and 4 core exercises to assess upper-body strength, lower-body strength, and core endurance, respectively. Peak acceleration of the sacrum, C7, and head were generally lower in the standing phase of the rising trot compared with the sitting phase of either the sitting or rising trot, particularly at the shortest stirrup length. Peak acceleration of the sacrum, C7, and head decreased as the stirrup length was shortened in the standing phase of the rising trot. Canonical correlations showed nonsignificant correlations between strength measurements and peak acceleration. Riding with more weight supported through the legs with a short stirrup length may decrease low back impacts and their associated injury risk. Technique training is likely needed to encourage riders to use lower-body and core strength for impact attenuation.


Asunto(s)
Marcha , Columna Vertebral , Fenómenos Biomecánicos , Femenino , Marcha/fisiología , Humanos , Fuerza Muscular , Pelvis/fisiología , Columna Vertebral/fisiología
2.
Animals (Basel) ; 13(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37627432

RESUMEN

Equestrian sport has various welfare issues and educational needs. To address these complex interactions, we propose an integrated approach called the Triple-E Model, which focuses on the equine, equestrian, and environmental triad. A literature review of existing models suggests that complexities of these interactions are overlooked, despite the significant impact of equine industries on economics, healthcare, and animal welfare. This paper discusses current models and theories used to evaluate equine-equestrian-environmental interactions and introduces the Triple-E Model to foster multidisciplinary collaboration. Unlike the One Health triad, which focuses on disease emergence, transmission, and zoonosis, the Triple-E Model extends to non-infectious research, such as musculoskeletal injury. It promotes collaborative care and rehabilitation within the equestrian community by engaging multidisciplinary, multi-setting, and multi-sectoral teams. Given the nature of human-animal interaction and welfare considerations, this model fills the gap in understanding human-horse interactions. The paper highlights the limitations of existing models and explains how the Triple-E Model guides and encourages holistic team collaboration in the equestrian community.

3.
J Phys Act Health ; 20(3): 169-179, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669501

RESUMEN

BACKGROUND: Over 75% of American adults are not meeting aerobic and muscular physical activity recommendations, with the majority being females. Equestrian activities are a potential avenue to increase physical activity, especially in females who account for approximately 90% of sport participants. This study describes perceptions of equestrian activities and establishes the patterns of self-reported equestrian, barn work, and nonequestrian physical activity engagement to understand participation in activities that may sustain physical activity across the lifespan. METHODS: American equestrians (n = 2551) completed an anonymous online survey with questions about perceptions and benefits of equestrian activities, demographics, and engagement in equestrian activities, barn work, and nonequestrian activities. RESULTS: There were 2039 completed responses, (95.6% female), with representation from all regions of the United States. Professionals (20.6%), amateurs (39.1%), and recreational (40.3%) comprised participation status. Significantly fewer recreational participants perceived equestrian as physical activity and as a sport than amateurs (P < .05) and professionals (P < .05). Engagement in equestrian and barn work physical activity was significantly higher in professionals (P < .0001), followed by amateurs (P < .0001), with the lowest in recreational equestrians (P = .001). Professional and amateur equestrians engaged in significantly more nonequestrian physical activity than recreational participants (P < .05). CONCLUSIONS: Equestrian physical activity engagement is dependent on the status of participation. Equestrian, barn work, and nonequestrian physical activity do meet physical activity aerobic and muscular recommendations and should be encouraged as a physical activity for females across the lifespan.


Asunto(s)
Ejercicio Físico , Deportes , Adulto , Humanos , Femenino , Masculino , Autoinforme , Atletas , Percepción
4.
Eur Rev Aging Phys Act ; 19(1): 2, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012451

RESUMEN

BACKGROUND: Loss of hand strength is a predictor of mortality in aging populations. Despite reliance on the hands to participate in equestrian driving activity, no existing studies focus on associations of hand strength to athletic performance. Therefore, this study 1) established baseline handgrip of equestrian combined drivers in standing and task-specific positions, 2) determined endurance of task-specific handgrip, 3) compared handgrip strength to normative data, and 4) evaluated associations of handgrip and equestrian-specific variables. METHODS: There were 51 combined drivers (9 males, 42 females) ages 21-78 who completed a survey, standing handgrip, and grip strength and endurance in a task-specific position. Sixty-three percent of participants were 50 years or older. The dynamometer grip bar was normalized by hand size for standing tests; to duplicate sport-specific tasks, the bar was set to the closest setting. Significances were determined at p < 0.05. RESULTS: Drivers with more than 30 years of experience demonstrated highest summed standing (73.1 ± 5.2 kg) and summed sitting (59.9 ± 6.3 kg) grip strength. Females 60-years and older had greater handgrip endurance (Χ2 = 8.323, df = 2, p = .0156) in non-dominant (left) hands. Males (60%) reported more cold weather fatigue than females. Glove wearing was associated with bilateral endurance balance; a higher proportion of endurance balance between dominant and non-dominant (49% high-high and 29% low-low; Χ2 = 11.047, df = 1, p = .0009) was realized. There were no associations of handgrip and prior injury. CONCLUSIONS: Our results have implications in understanding task-specific and normative grip strengths in aging equestrian populations. Bilateral balance in handgrip strength and endurance is important particularly in maintaining strength in non-dominant hands over time. Equestrian driving sport promotes greater endurance in older females. Strength can be improved by participating in combined driving, and engagement in this sport over several years' benefits hand strength over time. This cohort of equestrian participants provides evidence that participating in hand-specific activities promotes greater strength, which has been previously shown to improve aging outcomes.

5.
J Dance Med Sci ; 24(3): 135-141, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32867916

RESUMEN

The purpose of this study was to determine what differences exist when performing grand plié with and without the barre. Differences in center of pressure (COP) sway, trunk kinematics, and lower extremity kinematics were used in this analysis for both first (P1) and fifth positions (P5). It was hypothesized that use of the barre would result in decreased COP sway, but increased asymmetries in trunk and lower extremity kinematics would be seen compared with the same movements performed without the barre in both positions. Sixteen collegiate dancers (1 male, 15 female) performed three trials of grand plié in P1 and P5 (right leg crossed in front) with or without the barre, for a total of 12 trials. For the barre condition (BC), participants demonstrated less time to complete grand plié, slightly less depth in grand plié, and decreased anterior-posterior (AP) sway compared to the without barre condition (WBC). The BC condition showed increased peak left trunk rotation, right knee flexion, decreased right and left peak hip flexion, and increased right hip abduction in both P1 and P5. Comparing P1 to P5, there was decreased AP sway, decreased peak left trunk rotation, decreased peak right and left hip flexion, increased left hip abduction, and decreased right knee flexion in both BC and WBC conditions. For the BC, there was increased right hip abduction in P1 compared to P5. Our results indicate that while use of the barre provides proprioceptive information, which helps dancers to control balance and learn a motor control strategy, grand plié should also be taught without the barre to challenge the dancer's balance control with different movement patterns in space.


Asunto(s)
Baile/fisiología , Pierna/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Rango del Movimiento Articular/fisiología , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos , Femenino , Antepié Humano/fisiología , Articulación de la Cadera/fisiología , Humanos , Masculino , Equilibrio Postural/fisiología , Estrés Mecánico , Adulto Joven
6.
Sports Biomech ; 19(4): 421-437, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30945626

RESUMEN

The purpose was to quantify the effects of mid-flight whole-body and trunk rotation on knee mechanics in a double-leg landing. Eighteen male and 20 female participants completed a jump-landing-jump task in five conditions: no rotation, testing leg ipsilateral or contralateral (WBRC) to the whole-body rotation direction, and testing leg ipsilateral (TRI) or contralateral to the trunk rotation direction. The WBRC and TRI conditions demonstrated decreased knee flexion and increased knee abduction angles at initial contact (2.6 > Cohen's dz > 0.3) and increased peak vertical ground reaction forces and knee adduction moments during the 100 ms after landing (1.7 > Cohen's dz > 0.3). The TRI condition also showed the greatest knee internal rotation angles at initial contact and peak knee abduction and internal rotation angles and peak knee extension moments during the 100 ms after landing (2.0 > Cohen's dz > 0.5). Whole-body rotation increased contralateral knee loading because of its primary role in decelerating medial-lateral velocities. Trunk rotation resulted in the greatest knee loading for the ipsilateral knee due to weight shifting and mechanical coupling between the trunk and lower extremities. These findings may help understand altered trunk motion in anterior cruciate ligament injuries.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/fisiopatología , Rodilla/fisiología , Ejercicio Pliométrico , Torso/fisiología , Traumatismos en Atletas/fisiopatología , Fenómenos Biomecánicos , Femenino , Humanos , Pierna/fisiología , Masculino , Rotación , Análisis y Desempeño de Tareas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA